Effects of long-term warming on the aboveground biomass and species diversity in an alpine meadow on the Qinghai-Tibetan Plateau of China

被引:0
|
作者
WEN Jing [1 ]
QIN Ruimin [1 ]
ZHANG Shixiong [1 ]
YANG Xiaoyan [1 ]
XU Manhou [1 ]
机构
[1] Taiyuan Normal University
基金
中国国家自然科学基金;
关键词
climate warming; long-term warming; species diversity indices; aboveground biomass; soil microclimate; correlation analysis; alpine meadows;
D O I
暂无
中图分类号
S812 [草地学、草原学];
学科分类号
090503 ; 0909 ;
摘要
Ecosystems in high-altitude regions are more sensitive and respond more rapidly than other ecosystems to global climate warming. The Qinghai-Tibet Plateau(QTP) of China is an ecologically fragile zone that is sensitive to global climate warming. It is of great importance to study the changes in aboveground biomass and species diversity of alpine meadows on the QTP under predicted future climate warming. In this study, we selected an alpine meadow on the QTP as the study object and used infrared radiators as the warming device for a simulation experiment over eight years(2011–2018). We then analyzed the dynamic changes in aboveground biomass and species diversity of the alpine meadow at different time scales, including an early stage of warming(2011–2013) and a late stage of warming(2016–2018), in order to explore the response of alpine meadows to short-term(three years) and long-term warming(eight years). The results showed that the short-term warming increased air temperature by 0.31°C and decreased relative humidity by 2.54%, resulting in the air being warmer and drier. The long-term warming increased air temperature and relative humidity by 0.19°C and 1.47%, respectively, and the air tended to be warmer and wetter. The short-term warming increased soil temperature by 2.44°C and decreased soil moisture by 12.47%, whereas the long-term warming increased soil temperature by 1.76°C and decreased soil moisture by 9.90%. This caused the shallow soil layer to become warmer and drier under both short-term and long-term warming. Furthermore, the degree of soil drought was alleviated with increased warming duration. Under the long-term warming, the importance value and aboveground biomass of plants in different families changed. The importance values of grasses and sedges decreased by 47.56% and 3.67%, respectively, while the importance value of weeds increased by 1.37%. Aboveground biomass of grasses decreased by 36.55%, while those of sedges and weeds increased by 8.09% and 15.24%, respectively. The increase in temperature had a non-significant effect on species diversity. The species diversity indices increased at the early stage of warming and decreased at the late stage of warming, but none of them reached significant levels(P>0.05). Species diversity had no significant correlation with soil temperature and soil moisture under both short-term and long-term warming. Soil temperature and aboveground biomass were positively correlated in the control plots(P=0.014), but negatively correlated under the long-term warming(P=0.013). Therefore, eight years of warming aggravated drought in the shallow soil layer, which is beneficial for the growth of weeds but not for the growth of grasses. Warming changed the structure of alpine meadow communities and had a certain impact on the community species diversity. Our studies have great significance for the protection and effective utilization of alpine vegetation, as well as for the prevention of grassland degradation or desertification in high-altitude regions.
引用
下载
收藏
页码:252 / 266
页数:15
相关论文
共 50 条
  • [31] The construction of Grassland Degradation Index for Alpine Meadow in Qinghai-Tibetan Plateau
    Wen, L.
    Dong, S. K.
    Zhu, L.
    Li, X. Y.
    Shi, J. J.
    Wang, Y. L.
    Ma, Y. S.
    INTERNATIONAL CONFERENCE ON ECOLOGICAL INFORMATICS AND ECOSYSTEM CONSERVATION (ISEIS 2010), 2010, 2 : 1966 - 1969
  • [32] Interannual and seasonal variability in evapotranspiration of alpine meadow in the Qinghai-Tibetan Plateau
    Hong Zhang
    Ruiyin Dou
    Arabian Journal of Geosciences, 2020, 13
  • [33] Effect of microtopography on soil respiration in an alpine meadow of the Qinghai-Tibetan plateau
    Guoyong Li
    Junpeng Mu
    Yinzhan Liu
    Nicholas G. Smith
    Shucun Sun
    Plant and Soil, 2017, 421 : 147 - 155
  • [34] Effects of Grassland Tourism on Alpine Meadow Community and Soil Properties in the Qinghai-Tibetan Plateau
    Feng, Ling
    Gan, Mianyu
    Tian, Fu-Ping
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2019, 28 (06): : 4147 - 4152
  • [35] Significance of pollen assemblages for the vegetation composition of alpine shrub meadow in the Qinghai-Tibetan Plateau, China
    Li, Yiwen
    Xu, Qinghai
    Zhang, Shengrui
    Li, Yuecong
    Sun, Yuanhao
    Wang, Tao
    Shen, Wei
    Yang, Xiaolan
    Zhang, Ruchun
    Wei, Haicheng
    CHINESE SCIENCE BULLETIN-CHINESE, 2019, 64 (20): : 2141 - 2150
  • [36] Comparison of ecosystem characteristics between degraded and intact alpine meadow in the Qinghai-Tibetan Plateau, China
    You, QuanGang
    Xue, Xian
    Peng, Fei
    Xu, Manhou
    Duan, Hanchen
    Dong, Siyang
    ECOLOGICAL ENGINEERING, 2014, 71 : 133 - 143
  • [37] Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai-Tibetan Plateau, China
    Kato, T
    Tang, YH
    Gu, S
    Cui, XY
    Hirota, M
    Du, MY
    Li, YN
    Zhao, ZQ
    Oikawa, T
    AGRICULTURAL AND FOREST METEOROLOGY, 2004, 124 (1-2) : 121 - 134
  • [38] Recovery of plant species diversity during long-term experimental warming of a species-rich alpine meadow community on the Qinghai-Tibet plateau
    Zhang, Chunhui
    Willis, Charles G.
    Klein, Julia A.
    Ma, Zhen
    Li, Junyong
    Zhou, Huakun
    Zhao, Xinquan
    BIOLOGICAL CONSERVATION, 2017, 213 : 218 - 224
  • [39] Effects of Climatic Variability on Soil Water Content in an Alpine Kobresia Meadow, Northern Qinghai-Tibetan Plateau, China
    Si, Mengke
    Guo, Xiaowei
    Lan, Yuting
    Fan, Bo
    Cao, Guangmin
    WATER, 2022, 14 (17)
  • [40] Responses of ecosystem respiration to short-term experimental warming in the alpine meadow ecosystem of a permafrost site on the Qinghai-Tibetan Plateau
    Qin, Yu
    Yi, Shuhua
    Chen, Jianjun
    Ren, Shilong
    Wang, Xiaoyun
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2015, 115 : 77 - 84