Construction of One-Gray Weight Codes and Two-Gray Weight Codes over Z4+uZ4

被引:0
|
作者
SHI Minjia [1 ,2 ,3 ]
WANG Dandan [1 ,2 ,3 ]
GAO Jian [4 ]
WU Bo [5 ,3 ]
机构
[1] Key Laboratory of Intelligent Computing & Signal Processing, Ministry of Education, Anhui University
[2] National Mobile Communications Research Laboratory, Southeast University
[3] School of Mathematical Sciences, Anhui University
[4] School of Science, Shandong University of Technology
[5] State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences
基金
中国国家自然科学基金;
关键词
Generator matrix; Gray map; linear code; one-Gray weight code; two-Gray weight code;
D O I
暂无
中图分类号
O157.4 [编码理论(代数码理论)];
学科分类号
070104 ;
摘要
This paper firstly gives some necessary conditions on one-Gray weight linear codes. And then we use these results to construct several classes of one-Gray weight linear codes over Z4+uZ4(u2=u) with type 16k18k28k34k44k54k62k72k8based on a distance-preserving Gray map from(Z4 + u Z4)n to Z2n4. Secondly, the authors use the similar approach to do works on two-Gray(projective) weight linear codes. Finally, some examples are given to illustrate the construction methods.
引用
下载
收藏
页码:1472 / 1484
页数:13
相关论文
共 50 条
  • [41] Construction of One-Lee Weight and Two-Lee Weight Codes over IFp+vIFp
    SHI Minjia
    LUO Yong
    SOL Patrick
    Journal of Systems Science & Complexity, 2017, 30 (02) : 484 - 493
  • [42] Constant-Weight Gray Codes for Local Rank Modulation
    Schwartz, Moshe
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 869 - 873
  • [43] Constant-Weight Gray Codes for Local Rank Modulation
    Gad, Eyal En
    Langberg, Michael
    Schwartz, Moshe
    Bruck, Jehoshua
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (11) : 7431 - 7442
  • [44] THE WEIGHT ENUMERATOR OF A FAMILY OF CODES OVER GF(4)
    NEWMAN, B
    WARD, HN
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1980, 26 (03) : 366 - 367
  • [45] Linear codes over Z4 + uZ4: MacWilliams identities, projections, and formally self-dual codes
    Yildiz, Bahattin
    Karadeniz, Suat
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 27 : 24 - 40
  • [46] Codes with the same coset weight distributions as the Z4-linear Goethals codes
    Helleseth, T
    Zinoviev, V
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (04) : 1589 - 1595
  • [47] On Constacyclic Codes Over Z4[v]/⟨v2 - v⟩ and Their Gray Images
    Dinh, Hai Q.
    Singh, Abhay Kumar
    Kumar, Narendra
    Sriboonchitta, Songsak
    IEEE COMMUNICATIONS LETTERS, 2018, 22 (09) : 1758 - 1761
  • [48] On constacyclic codes over Z4[u] / ⟨u2-1⟩ and their Gray images
    Shi, Minjia
    Qian, Liqin
    Sok, Lin
    Aydin, Nuh
    Sole, Patrick
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 45 : 86 - 95
  • [49] Cyclic codes over Z4 with good parameters considering Lee weight
    Encheva, S
    Kohno, R
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1998, E81A (03) : 507 - 509
  • [50] (σ, δ)-Skew quasi-cyclic codes over the ring Z4 + uZ4
    Ma, Fanghui
    Gao, Jian
    Li, Juan
    Fu, Fang-Wei
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2021, 13 (02): : 307 - 320