Point-Transitive Linear Spaces

被引:0
|
作者
Haiyan GUAN
机构
[1] Department of Mathematics, China Three Gorges University
[2] Three Gorges Mathematical Research Center
基金
中国国家自然科学基金;
关键词
linear space; design; automorphism group; point-transitive;
D O I
暂无
中图分类号
O177.3 [线性空间理论(向量空间)];
学科分类号
070104 ;
摘要
This work is a contribution to the classification of linear spaces admitting a pointtransitive automorphism group. Let S be a regular linear space with 51 points, with lines of size 6, and G be an automorphism group of S. We prove that G cannot be point-transitive.
引用
收藏
页码:551 / 556
页数:6
相关论文
共 50 条
  • [21] Finite flag-transitive linear spaces with alternating socle
    Delandtsheer, A
    ALGEBRAIC COMBINATORICS AND APPLICATIONS, 2001, : 79 - 88
  • [22] FINITE LINEAR-SPACES WITH FLAG-TRANSITIVE GROUPS
    BUEKENHOUT, F
    DELANDTSHEER, A
    DOYEN, J
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1988, 49 (02) : 268 - 293
  • [23] Solvable line-transitive automorphism groups of finite linear spaces
    Liu, WJ
    Li, HL
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2000, 43 (10): : 1009 - 1013
  • [24] Solvable line-transitive automorphism groups of finite linear spaces
    刘伟俊
    李慧陵
    Science China Mathematics, 2000, (10) : 1009 - 1013
  • [25] Finite line-transitive linear spaces: Theory and search strategies
    Anton Betten
    Anne Delandtsheer
    Maska Law
    Alice C. Niemeyer
    Cheryl E. Praeger
    Shenglin Zhou
    Acta Mathematica Sinica, English Series, 2009, 25 : 1399 - 1436
  • [26] Finite Line-transitive Linear Spaces:Theory and Search Strategies
    Anton BETTEN
    Anne DELANDTSHEER
    Maska LAW
    Alice C.NIEMEYER
    Cheryl E.PRAEGER
    ActaMathematicaSinica(EnglishSeries), 2009, 25 (09) : 1399 - 1436
  • [27] Finite line-transitive linear spaces: Theory and search strategies
    Betten, Anton
    Delandtsheer, Anne
    Law, Maska
    Niemeyer, Alice C.
    Praeger, Cheryl E.
    Zhou, Shenglin
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (09) : 1399 - 1436
  • [28] Solvable line-transitive automorphism groups of finite linear spaces
    Weijun Liu
    Huiling Li
    Science in China Series A: Mathematics, 2000, 43 : 1009 - 1013
  • [29] LINEAR-SPACES WITH FLAG-TRANSITIVE AUTOMORPHISM-GROUPS
    BUEKENHOUT, F
    DELANDTSHEER, A
    DOYEN, J
    KLEIDMAN, PB
    LIEBECK, MW
    SAXL, J
    GEOMETRIAE DEDICATA, 1990, 36 (01) : 89 - 94
  • [30] LINE-TRANSITIVE AUTOMORPHISM-GROUPS OF LINEAR-SPACES
    CAMINA, AR
    PRAEGER, CE
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1993, 25 : 309 - 315