Localization and Manipulation of Immoral Visual Cues for Safe Text-to-Image Generation

被引:0
|
作者
Park, Seongbeom [1 ]
Moon, Suhong [2 ]
Park, Seunghyun [3 ]
Kim, Jinkyu [1 ]
机构
[1] Korea Univ, CSE, Seoul, South Korea
[2] Univ Calif Berkeley, EECS, Berkeley, CA USA
[3] NAVER Cloud AI, Seoul, South Korea
来源
2024 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION, WACV 2024 | 2024年
关键词
D O I
10.1109/WACV57701.2024.00461
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Current text-to-image generation methods produce high-resolution and high-quality images, but they should not produce immoral images that may contain inappropriate content from the perspective of commonsense morality. Conventional approaches, however, often neglect these ethical concerns, and existing solutions are often limited to ensure moral compatibility. To address this, we propose a novel method that has three main capabilities: (1) our model recognizes the degree of visual commonsense immorality of a given generated image, (2) our model localizes immoral visual (and textual) attributes that make the image visually immoral, and (3) our model manipulates such immoral visual cues into a morally-qualifying alternative. We conduct experiments with various text-to-image generation models, including the state-of-the-art Stable Diffusion model, demonstrating the efficacy of our ethical image manipulation approach. Our human study further confirms that ours is indeed able to generate morally-satisfying images from immoral ones.
引用
收藏
页码:4663 / 4672
页数:10
相关论文
共 50 条
  • [21] StyleDrop: Text-to-Image Generation in Any Style
    Sohn, Kihyuk
    Ruiz, Nataniel
    Lee, Kimin
    Chin, Daniel Castro
    Blok, Irina
    Chang, Huiwen
    Barber, Jarred
    Jiang, Lu
    Entis, Glenn
    Li, Yuanzhen
    Hao, Yuan
    Essa, Irfan
    Rubinstein, Michael
    Krishnan, Dilip
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [22] A taxonomy of prompt modifiers for text-to-image generation
    Oppenlaender, Jonas
    BEHAVIOUR & INFORMATION TECHNOLOGY, 2024, 43 (15) : 3763 - 3776
  • [23] Text-to-Image Generation Method Based on Image-Text Semantic Consistency
    Xue Z.
    Xu Z.
    Lang C.
    Feng S.
    Wang T.
    Li Y.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2023, 60 (09): : 2180 - 2190
  • [24] Large-scale Text-to-Image Generation Models for Visual Artists' Creative Works
    Ko, Hyung-Kwon
    Park, Gwanmo
    Jeon, Hyeon
    Jo, Jaemin
    Kim, Juho
    Seo, Jinwook
    PROCEEDINGS OF 2023 28TH ANNUAL CONFERENCE ON INTELLIGENT USER INTERFACES, IUI 2023, 2023, : 919 - 933
  • [25] Locally controllable network based on visual–linguistic relation alignment for text-to-image generation
    Zaike Li
    Li Liu
    Huaxiang Zhang
    Dongmei Liu
    Yu Song
    Boqun Li
    Multimedia Systems, 2024, 30
  • [26] Generative adversarial text-to-image generation with style image constraint
    Zekang Wang
    Li Liu
    Huaxiang Zhang
    Dongmei Liu
    Yu Song
    Multimedia Systems, 2023, 29 : 3291 - 3303
  • [27] Generative adversarial text-to-image generation with style image constraint
    Wang, Zekang
    Liu, Li
    Zhang, Huaxiang
    Liu, Dongmei
    Song, Yu
    MULTIMEDIA SYSTEMS, 2023, 29 (06) : 3291 - 3303
  • [28] Unleashing Text-to-Image Diffusion Models for Visual Perception
    Zhao, Wenliang
    Rao, Yongming
    Liu, Zuyan
    Liu, Benlin
    Zhou, Jie
    Lu, Jiwen
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 5706 - 5716
  • [29] Improving text-to-image generation with object layout guidance
    Jezia Zakraoui
    Moutaz Saleh
    Somaya Al-Maadeed
    Jihad Mohammed Jaam
    Multimedia Tools and Applications, 2021, 80 : 27423 - 27443
  • [30] Variational Distribution Learning for Unsupervised Text-to-Image Generation
    Kang, Minsoo
    Lee, Doyup
    Kim, Jiseob
    Kim, Saehoon
    Han, Bohyung
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 23380 - 23389