Low-temperature performance of Zn-modified graphite and hard carbon as anodes for lithium-ion batteries

被引:0
|
作者
Belgibayeva, Ayaulym [1 ]
Kydyrbayeva, Uldana [1 ]
Rakhatkyzy, Makpal [2 ]
Kalimuldina, Gulnur [3 ]
Nurpeissova, Arailym [1 ]
Bakenov, Zhumabay [1 ,2 ]
机构
[1] Natl Lab Astana, Kabanbay Batyr Ave 53, Astana 010000, Kazakhstan
[2] Nazarbayev Univ, Sch Engn & Digital Sci, Dept Chem & Mat Engn, Kabanbay Batyr Ave 53, Astana 010000, Kazakhstan
[3] Nazarbayev Univ, Sch Engn & Digital Sci, Dept Mech & Aerosp Engn, Kabanbay Batyr Ave 53, Astana 010000, Kazakhstan
关键词
Graphite; Hard carbon; Zn modification; Low temperature; Lithium-ion batteries; ELECTROCHEMICAL PERFORMANCE; COMPOSITE ANODES; BEHAVIOR;
D O I
10.1016/j.solidstatesciences.2025.107923
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Graphite has been the primary anode material in commercial lithium-ion batteries (LIBs) due to its lithium-like charge/discharge profiles and stable performance at room temperature. However, its effectiveness in lowtemperature conditions remains a significant limitation for LIB applications. Hard carbon, an alternative anode material, offers potential advantages in low-temperature environments due to its unique porous structure and lithium storage mechanism. In this study, Zn-modified graphite and hard carbon electrodes were developed by partially substituting the conductive agent acetylene black with 1 wt% Zn. The impact of this Zn addition on the low-temperature performance of the anodes and solid electrolyte interphase (SEI) formation was systematically investigated, comparing Zn-modified electrodes to pristine Zn-free ones. The results indicate that Zn incorporation enhances electrochemical performance by improving electrical conductivity and fostering the development of a thin, uniform LiF-rich SEI layer, which reduces charge-transfer resistance and accelerates electrode activation at low temperatures.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Low-Temperature Behavior of Alloy Anodes for Lithium-Ion Batteries
    Cavallaro, Kelsey A.
    Sandoval, Stephanie Elizabeth
    Yoon, Sun Geun
    Thenuwara, Akila C.
    McDowell, Matthew T.
    ADVANCED ENERGY MATERIALS, 2022, 12 (43)
  • [2] Spruce Hard Carbon Anodes for Lithium-Ion Batteries
    Drews, Mathias
    Buettner, Jan
    Bauer, Manuel
    Ahmed, Junaid
    Sahu, Rajib
    Scheu, Christina
    Vierrath, Severin
    Fischer, Anna
    Biro, Daniel
    CHEMELECTROCHEM, 2021, 8 (24) : 4750 - 4761
  • [3] Stable cycling and low-temperature operation utilizing amorphous carbon-coated graphite anodes for lithium-ion batteries
    Xiao, Pengfei
    Wang, Zhongming
    Long, Kecheng
    Yang, Jixu
    Liu, Xinsheng
    Ling, Canhui
    Chen, Libao
    Mei, Lin
    RSC ADVANCES, 2024, 14 (19) : 13277 - 13285
  • [4] Modified Silicon Anode for Improved Low-Temperature Performance of Lithium-Ion Batteries
    Mennel, Jason A.
    Chidambaram, Dev
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2024, 21 (01)
  • [5] Oriented-Etched Graphite for Low-Temperature Lithium-Ion Batteries
    Xu, Jiang
    Wang, Xuanding
    Hu, Bingqing
    Ding, Jianning
    Zhang, Zhongqiang
    Ge, Shanhai
    BATTERIES & SUPERCAPS, 2023, 6 (04)
  • [6] Irreversible capacities of graphite in low-temperature electrolytes for lithium-ion batteries
    Smart, MC
    Ratnakumar, BV
    Surampudi, S
    Wang, Y
    Zhang, X
    Greenbaum, SG
    Hightower, A
    Ahn, CC
    Fultz, B
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (11) : 3963 - 3969
  • [7] Alternative anodes for low temperature lithium-ion batteries
    Collins, Gearoid A.
    Geaney, Hugh
    Ryan, Kevin M.
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (25) : 14172 - 14213
  • [8] LiF modified hard carbon from date seeds as an anode material for enhanced low-temperature lithium-ion batteries
    Issatayev, Nurbolat
    Tassybay, Kazna
    Wu, Nae-Lih
    Nurpeissova, Arailym
    Bakenov, Zhumabay
    Kalimuldina, Gulnur
    CARBON, 2024, 229
  • [9] A Review on Low-Temperature Performance Management of Lithium-Ion Batteries
    Zhan, Jincheng
    Deng, Yifei
    Gao, Yaohui
    Ren, Jiaoyi
    Liu, Yuang
    Rao, Shun
    Li, Weifeng
    Gao, Zhenhai
    Chen, Yupeng
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2024, 21 (03)
  • [10] Low-temperature electrolyte for lithium and lithium-ion batteries
    Plichta, E.J.
    Behl, W.K.
    1600, Elsevier Sequoia SA, Switzerland (88):