Optimizing microfluidic chip for rapid SARS-CoV-2 detection using Taguchi method and artificial neural network PSO

被引:0
|
作者
Sameh Kaziz [1 ]
Fraj Echouchene [2 ]
Mohamed Hichem Gazzah [3 ]
机构
[1] Centre for Research on Microelectronics and Nanotechnology (CRMN) of Sousse Technopole,NANOMISENE Laboratory, LR16CRMN01
[2] University of Sousse,Higher Institute of Applied Sciences and Technology of Sousse
[3] University of Monastir,Laboratory of Electronics and Microelectronics LR99ES30, Faculty of Sciences
[4] University of Monastir,Quantum and Statistical Physics Laboratory, Faculty of Sciences of Monastir
关键词
ANOVA; Biosensor; SARS-CoV-2; Particle swarm optimization; Taguchi method;
D O I
10.1038/s41598-025-98304-5
中图分类号
学科分类号
摘要
Microfluidic biosensors offer a promising solution for real-time analysis of coronaviruses with minimal sample volumes. This study optimizes a biochip for the rapid detection of SARS-CoV-2 using the Taguchi orthogonal table L9(34), which comprises nine groups of experiments varying four key parameters: Reynolds number (Re), Damköhler number (Da), Schmidt number (Sc), and the dimensionless position of the reaction surface (X). Signal-to-noise (S/N) ratios and analysis of variance (ANOVA) are employed to determine optimal parameters and assess their impact on binding kinetics and response time of the detection device. These obtained optimal parameters correspond to Re = 4.10-2, Da = 1000, Sc = 105, and X = 1. Additionally, results highlight Da as the most influential factor, accounting for 91%, while X has a minimal effect of 0.3%. Furthermore, an artificial neural network optimization technique, specifically particle swarm optimization (PSO), was utilized to predict biosensor performance. Derived from the Full L81(34) design experiment, the PSO model demonstrates its effectiveness compared to the conventional multi-layer perception (MLP) model, thus underlining its potential in this innovative optimization context.
引用
收藏
相关论文
共 50 条
  • [21] Prediction of Recurrent Mutations in SARS-CoV-2 Using Artificial Neural Networks
    Saldivar-Espinoza, Bryan
    Macip, Guillem
    Garcia-Segura, Pol
    Mestres-Truyol, Julia
    Puigbo, Pere
    Cereto-Massague, Adria
    Pujadas, Gerard
    Garcia-Vallve, Santiago
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (23)
  • [22] SARS-CoV-2 rapid antigen detection tests
    Fouzas, Sotirios
    LANCET INFECTIOUS DISEASES, 2021, 21 (08): : 1068 - 1069
  • [23] Rapid antigen detection tests for SARS-CoV-2
    Liu, Michael
    Arora, Rahul K.
    Krajden, Mel
    CANADIAN MEDICAL ASSOCIATION JOURNAL, 2021, 193 (23) : E886 - E887
  • [24] Rapid electrochemical detection of coronavirus SARS-CoV-2
    Thanyarat Chaibun
    Jiratchaya Puenpa
    Tatchanun Ngamdee
    Nimaradee Boonapatcharoen
    Pornpat Athamanolap
    Anthony Peter O’Mullane
    Sompong Vongpunsawad
    Yong Poovorawan
    Su Yin Lee
    Benchaporn Lertanantawong
    Nature Communications, 12
  • [25] Rapid electrochemical detection of coronavirus SARS-CoV-2
    Chaibun, Thanyarat
    Puenpa, Jiratchaya
    Ngamdee, Tatchanun
    Boonapatcharoen, Nimaradee
    Athamanolap, Pornpat
    O'Mullane, Anthony Peter
    Vongpunsawad, Sompong
    Poovorawan, Yong
    Lee, Su Yin
    Lertanantawong, Benchaporn
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [26] Digital RT-PCR Chip method for detection of SARS-CoV-2 virus
    Dioni, Laura
    Orlandi, Annarosa
    Renteria, Sara Uceda
    Favero, Chiara
    Solazzo, Giulia
    Oggioni, Massimo
    Bollati, Valentina
    JOURNAL OF IMMUNOLOGICAL METHODS, 2022, 509
  • [27] Rolling on the Chip: SARS-CoV-2 Detection by DNA Motors
    Ding, Longjiang
    Liu, Na
    ACS CENTRAL SCIENCE, 2024, 10 (07) : 1311 - 1313
  • [28] Convolutional neural network based SARS-CoV-2 patients detection model using CT images
    Khan, Shahnawaz
    Thirunavukkarasu, K.
    Hammad, Rawad
    Bali, Vikram
    Qader, Mohammed Redha
    INTERNATIONAL JOURNAL OF INTELLIGENT ENGINEERING INFORMATICS, 2021, 9 (02) : 211 - 228
  • [29] Microfluidic Chip with Two-Stage Isothermal Amplification Method for Highly Sensitive Parallel Detection of SARS-CoV-2 and Measles Virus
    Huang, Qin
    Shan, Xiaohui
    Cao, Ranran
    Jin, Xiangyu
    Lin, Xue
    He, Qiurong
    Zhu, Yulei
    Fu, Rongxin
    Du, Wenli
    Lv, Wenqi
    Xia, Ying
    Huang, Guoliang
    MICROMACHINES, 2021, 12 (12)
  • [30] Detection and identification of SARS-CoV-2 and influenza a based on microfluidic technology
    Liu, Yujie
    Yu, Guanliu
    Liang, Hongkun
    Sun, Wenbo
    Zhang, Lulu
    Mauk, Michael G.
    Li, Hua
    Chen, Lei
    ANALYTICAL METHODS, 2024, 16 (27) : 4582 - 4589