Classical (and quantum) heuristics for gravitational wave detection

被引:0
|
作者
Raffaele Tito D’Agnolo [1 ]
Sebastian A. R. Ellis [2 ]
机构
[1] Université Paris Saclay,Institut de Physique Théorique
[2] CEA,Laboratoire de Physique de l’École Normale Supérieure, ENS
[3] Université PSL,Département de Physique Théorique
[4] CNRS,undefined
[5] Sorbonne Université,undefined
[6] Université Paris Cité,undefined
[7] Université de Genève,undefined
关键词
Classical Theories of Gravity; Cosmological models; Early Universe Particle Physics; Phase Transitions in the Early Universe;
D O I
10.1007/JHEP04(2025)164
中图分类号
学科分类号
摘要
We derive a lower bound on the sensitivity of generic mechanical and electromagnetic gravitational wave detectors. We consider both classical and quantum detection schemes, although we focus on the former. Our results allow for a simple reproduction of the sensitivities of a variety of experiments, including optical interferometers, resonant bars, optomechanical sensors, and electromagnetic conversion experiments. In the high-frequency regime, all detection schemes we consider can be characterised by their stored electromagnetic energy and the signal transfer function, which we provide. We discuss why high-frequency gravitational wave searches are especially difficult and primordial gravitational wave backgrounds might not be detectable above the sensitivity window of existing interferometers.
引用
收藏
相关论文
共 50 条
  • [21] Gravitational wave detection in space
    Ni, Wei-Tou
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2016, 25 (14):
  • [22] Gravitational Wave Detection in Japan
    Ohashi, Masatake
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2011, (190): : 335 - 338
  • [23] Quantum metrology for gravitational wave astronomy
    Schnabel, Roman
    Mavalvala, Nergis
    McClelland, David E.
    Lam, Ping K.
    NATURE COMMUNICATIONS, 2010, 1
  • [24] Quantum metrology for gravitational wave astronomy
    Roman Schnabel
    Nergis Mavalvala
    David E. McClelland
    Ping K. Lam
    Nature Communications, 1
  • [25] Gravitational-wave background in bouncing models from semi-classical, quantum and string gravity
    Ben-Dayan, Ido
    Calcagni, Gianluca
    Gasperini, Maurizio
    Mazumdar, Anupam
    Pavone, Eliseo
    Thattarampilly, Udaykrishna
    Verma, Amresh
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (09):
  • [26] Entangling quantum fields via a classical gravitational interaction
    Reginatto, M.
    Hall, M. J. W.
    9TH INTERNATIONAL WORKSHOP DICE2018: SPACETIME - MATTER - QUANTUM MECHANICS, 2019, 1275
  • [27] PROBLEMS OF CLASSICAL AND QUANTUM GRAVITATIONAL COLLAPSES .9.
    PONOMARYOV, VN
    KRECHET, VG
    PRONIN, PI
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1978, (03): : 18 - 24
  • [28] PROBLEMS OF CLASSICAL AND QUANTUM GRAVITATIONAL COLLAPSE .4.
    KRECHET, VG
    PONOMARYOV, VN
    BARVINSKII, AO
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1977, (09): : 7 - 12
  • [29] Classical and quantum gravitational scattering with Generalized Wilson Lines
    D. Bonocore
    A. Kulesza
    J. Pirsch
    Journal of High Energy Physics, 2022
  • [30] Classical and quantum study of the motion of a particle in a gravitational field
    Mário N. Berberan-Santos
    Evgeny N. Bodunov
    Lionello Pogliani
    Journal of Mathematical Chemistry, 2005, 37 : 101 - 115