Task offloading and resource allocation for multi-UAV asset edge computing with multi-agent deep reinforcement learning

被引:0
|
作者
Samah A. Zakaryia [1 ]
Mohamed Meaad [2 ]
Tamer Nabil [3 ]
Mohamed K. Hussein [2 ]
机构
[1] Faculty of Computers and Informatics,Department of Computer Science
[2] Suez Canal University,Computer Science Department
[3] Suez Canal University,Basic Science Department
关键词
Mobile edge computing; Task offloading; Multi-UAV network; Multi-agent deep reinforcement learning; Distance to task location and capability match; 90B35; 90C27; 90C59; 68M14; 68T20;
D O I
10.1007/s00607-025-01472-5
中图分类号
学科分类号
摘要
Mobile edge computing (MEC) has emerged as a key solution for addressing the demands of computation-intensive network services by providing computational resources at the network edge, thereby minimizing service delays. Leveraging their flexible deployment, wide coverage, and reliable wireless communication, unmanned aerial vehicles (UAVs) have been integrated into MEC systems to enhance performance. This paper investigates the task offloading problem in a Multi-UAV-assisted MEC environment and proposes a collaborative optimization framework that integrates the Distance to Task Location and Capability Match (DTLCM) mechanism with a Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm. Unlike traditional task priority-based offloading schemes, the proposed approach ensures optimal UAV selection based on both computational capability and spatial proximity. The system gain is defined in terms of energy efficiency and task delay with the optimization formulated as a mixed-integer programming problem. To efficiently solve this complex problem, a Multi-Agent Deep Reinforcement Learning framework is employed, combining MADDPG with DTLCM to jointly optimize UAV trajectories, task offloading decisions, computational resource allocation, and communication resource management. Comprehensive simulations demonstrate that the proposed MADDPG-DTLCM framework significantly outperforms four state-of-the-art methods (MADDPG-DTLCM,MADQN, MADDPG without DTLCM, and Greedy offloading), achieving 18% higher task completion rates and 12% lower latency under varying network conditions, particularly in high-user-density scenarios with UAV collaboration.
引用
收藏
相关论文
共 50 条
  • [41] Blockchain-based Dependable Task Offloading and Resource Allocation for IIoT via Multi-Agent Deep Reinforcement Learning
    Zhang, Peifeng
    Xu, Chi
    Xia, Changqing
    Jin, Xi
    2023 IEEE 98TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-FALL, 2023,
  • [42] Hierarchical Task Offloading for Vehicular Fog Computing Based on Multi-Agent Deep Reinforcement Learning
    Hou, Yukai
    Wei, Zhiwei
    Zhang, Rongqing
    Cheng, Xiang
    Yang, Liuqing
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (04) : 3074 - 3085
  • [43] Heterogeneous multi-agent deep reinforcement learning based low carbon emission task offloading in mobile edge computing
    Zhou, Xiongjie
    Guan, Xin
    Sun, Di
    Zhang, Xiaoguang
    Zhang, Zhaogong
    Ohtsuki, Tomoaki
    COMPUTER COMMUNICATIONS, 2025, 234
  • [44] Cooperative Task Offloading and Block Mining in Blockchain-Based Edge Computing With Multi-Agent Deep Reinforcement Learning
    Nguyen, Dinh C.
    Ding, Ming
    Pathirana, Pubudu N.
    Seneviratne, Aruna
    Li, Jun
    Poor, H. Vincent
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (04) : 2021 - 2037
  • [45] Energy-Efficient Multi-UAV Network using Multi-Agent Deep Reinforcement Learning
    Ju, Hyungyu
    Shim, Byonghyo
    2022 IEEE VTS ASIA PACIFIC WIRELESS COMMUNICATIONS SYMPOSIUM, APWCS, 2022, : 70 - 74
  • [46] DEEP REINFORCEMENT LEARNING FOR COMPUTATION OFFLOADING AND RESOURCE ALLOCATION IN BLOCKCHAIN-BASED MULTI-UAV-ENABLED MOBILE EDGE COMPUTING
    Mohammed, Abegaz
    Nahom, Hayla
    Tewodros, Ayall
    Habtamu, Yasin
    Hayelow, Gebrye
    2020 17TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2020, : 295 - 299
  • [47] Multi-Agent Deep Reinforcement Learning for Cooperative Computing Offloading and Route Optimization in Multi Cloud-Edge Networks
    Suzuki, Akito
    Kobayashi, Masahiro
    Oki, Eiji
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2023, 20 (04): : 4416 - 4434
  • [48] Multi-Agent Deep Reinforcement Learning for Computation Offloading in Multi-IRS Assisted Mobile Edge Computing Networks
    Chen, Lingxiao
    Li, Xiuhua
    Sun, Chuan
    Fan, Qilin
    Wang, Xiaofei
    Leung, Victor C. M.
    2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC 2024, 2024,
  • [49] BRAVE: Benefit-aware data offloading in UAV edge computing using multi-agent reinforcement learning
    Pantaleon, Odyssefs Diamantopoulos
    Rahman, Aisha B.
    Tsiropoulou, Eirini Eleni
    SIMULATION MODELLING PRACTICE AND THEORY, 2025, 140
  • [50] Task Offloading and Resource Allocation for Mobile Edge Computing by Deep Reinforcement Learning Based on SARSA
    Alfakih, Taha
    Hassan, Mohammad Mehedi
    Gumaei, Abdu
    Savaglio, Claudio
    Fortino, Giancarlo
    IEEE ACCESS, 2020, 8 : 54074 - 54084