3DMAU-Net: liver segmentation network based on 3D U-Net

被引:0
|
作者
Dong Zhu [1 ]
Tianyi Ma [1 ]
Mengzhu Yang [1 ]
Guoqiang Li [1 ]
Shunbo Hu [1 ]
Yongfang Wang [1 ]
机构
[1] Linyi University,School of Information Science and Engineering
关键词
A;
D O I
10.1007/s11801-025-4110-0
中图分类号
学科分类号
摘要
Considering the three-dimensional (3D) U-Net lacks sufficient local feature extraction for image features and lacks attention to the fusion of high- and low-level features, we propose a new model called 3DMAU-Net based on the 3D U-Net architecture for liver region segmentation. Our model replaces the last two layers of the 3D U-Net with a sliding window-based multilayer perceptron (SMLP), enabling better extraction of local image features. We also design a high- and low-level feature fusion dilated convolution block that focuses on local features and better supplements the surrounding information of the target region. This block is embedded in the entire encoding process, ensuring that the overall network is not simply downsampling. Before each feature extraction, the input features are processed by the dilated convolution block. We validate our experiments on the liver tumor segmentation challenge 2017 (Lits2017) dataset, and our model achieves a Dice coefficient of 0.95, which is an improvement of 0.015 compared to the 3D U-Net model. Furthermore, we compare our results with other segmentation methods, and our model consistently outperforms them.
引用
收藏
页码:370 / 377
页数:7
相关论文
共 50 条
  • [31] MULTIMODAL SEGMENTATION BASED ON A NOVEL 3D U-NET DEEP LEARNING ARCHITECTURE
    Swaroopa, K. M.
    Chetty, Girija
    2021 IEEE ASIA-PACIFIC CONFERENCE ON COMPUTER SCIENCE AND DATA ENGINEERING (CSDE), 2021,
  • [32] A Multi Brain Tumor Region Segmentation Model Based on 3D U-Net
    Li, Zhenwei
    Wu, Xiaoqin
    Yang, Xiaoli
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [33] On Improving 3D U-net Architecture
    Janovsky, Roman
    Sedlacek, David
    Zara, Jiri
    ICSOFT: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON SOFTWARE TECHNOLOGIES, 2019, : 649 - 656
  • [34] Comparison of tissue segmentation performance between 2D U-Net and 3D U-Net on brain MR Images
    Woo, Boyeong
    Lee, Myungeun
    2021 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2021,
  • [35] 3D Automatic Brain Tumor Segmentation Using a Multiscale Input U-Net Network
    Gonzalez, S. Rosas
    Sekou, T. Birgui
    Hidane, M.
    Tauber, C.
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 113 - 123
  • [36] A whole 3D liver reconstruction for personalised preoperative surgery based on FCN U-net model segmentation
    Benahmed, Amina
    Khemis, Kamila
    Salim, Loudjedi
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2024, 44 (02) : 103 - 119
  • [37] An End-to-End Segmentation Network for the Temporomandibular Joints CBCT Image based on 3D U-Net
    Zhang, Kai
    Li, Jupeng
    Ma, Ruohan
    Li, Gang
    2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 664 - 668
  • [38] R2U3D: Recurrent Residual 3D U-Net for Lung Segmentation
    Kadia, Dhaval D.
    Alom, Md Zahangir
    Burada, Ranga
    Nguyen, Tam, V
    Asari, Vijayan K.
    IEEE ACCESS, 2021, 9 : 88835 - 88843
  • [39] ACU-NET: A 3D ATTENTION CONTEXT U-NET FOR MULTIPLE SCLEROSIS LESION SEGMENTATION
    Hu, Chuan
    Kang, Guixia
    Hou, Beibei
    Ma, Yiyuan
    Labeau, Fabrice
    Su, Zichen
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 1384 - 1388
  • [40] DSU-Net: Distraction-Sensitive U-Net for 3D lung tumor segmentation
    Zhao, Junting
    Dang, Meng
    Chen, Zhihao
    Wan, Liang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 109