For centuries, earthen materials have regained popularity because of the high carbon emissions caused by the construction sector. Although earth-based materials possess superior properties, such as recyclability, easy accessibility, affordability, and high thermal conductivity, they are not without drawbacks. They are, for instance, relatively weak and sensitive to water, and their physical and chemical properties can vary considerably depending on the source from which they are obtained. Stabilisation is often used to overcome these drawbacks. In this study, natural earth-based materials were stabilised with biopolymers of organic origin, such as alginate, Arabic gum, xanthan gum, and locust bean gum, to preserve their natural properties. To produce the samples, the earth material used in the road sub-base layer was mixed with kaolin clay and silica sand, and the mixtures were prepared by substituting biopolymer materials with clay at a ratio of 0.1%. After determining the fresh unit volume weights, spreading diameters (flow table test), penetration depths (fall cone test), and air content of the mixtures, the flexural and compressive strengths of the cured specimens were measured. In addition, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses were performed to determine the microstructural characteristics. According to the 28-day compressive strength results, the mix with xanthan gum was found to be almost twice as strong as the other mixes. It has been concluded that biopolymer-stabilised earth mixtures can be used as a fill material in buildings where high strength is not required, or as a paving material on low-traffic roads.