The Error and Perturbation Bounds of the General Absolute Value Equations

被引:0
|
作者
Cui-Xia Li [1 ]
Shi-Liang Wu [1 ]
机构
[1] Yunnan Normal University,School of Mathematics
[2] Yunnan Normal University,Yunnan Key Laboratory of Modern Analytical Mathematics and Applications
关键词
Absolute value equations; The error bound; The perturbation bound; Linear complementarity problem; 65G50; 90C33;
D O I
10.1007/s10957-025-02669-6
中图分类号
学科分类号
摘要
To our knowledge, the error and perturbation bounds of the general absolute value equations (AVE) are not discussed. In order to fill in this study gap, in this paper, by introducing a class of absolute value functions, we study the error and perturbation bounds of these two AVEs: Ax-B|x|=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ax-B|x|=b$$\end{document} and Ax-|Bx|=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ax-|Bx|=b$$\end{document}. Some useful error bounds and perturbation bounds of the above two AVEs are provided. Without limiting the matrix type, some computable estimates for the relevant upper bounds are given. By applying the absolute value equations, a new approach for some existing perturbation bounds of the linear complementarity problem (LCP) in (SIAM J. Optim., 18 (2007) 1250-1265) is provided. Some numerical examples for the AVEs from the LCP are given to show the feasibility of the perturbation bounds.
引用
收藏
相关论文
共 50 条
  • [31] Stochastic absolute value equations
    Du, Shouqiang
    Sun, Jingjing
    Niu, Shengqun
    Zhang, Liping
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (01) : 921 - 939
  • [32] ON GENERALIZED ABSOLUTE VALUE EQUATIONS
    Noor, M. A.
    Noor, K. I.
    Batool, S.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (04): : 63 - 70
  • [33] A note on absolute value equations
    Hu, Sheng-Long
    Huang, Zheng-Hai
    OPTIMIZATION LETTERS, 2010, 4 (03) : 417 - 424
  • [34] Stochastic absolute value equations
    Shouqiang Du
    Jingjing Sun
    Shengqun Niu
    Liping Zhang
    Journal of Applied Mathematics and Computing, 2023, 69 : 921 - 939
  • [35] Tensor absolute value equations
    Shouqiang Du
    Liping Zhang
    Chiyu Chen
    Liqun Qi
    Science China(Mathematics), 2018, 61 (09) : 157 - 172
  • [36] Tensor absolute value equations
    Shouqiang Du
    Liping Zhang
    Chiyu Chen
    Liqun Qi
    Science China Mathematics, 2018, 61 : 1695 - 1710
  • [37] PERTURBATION OF ERROR BOUNDS FOR VECTOR-VALUED FUNCTIONS
    Hu, Chunhai
    He, Qinghai
    PACIFIC JOURNAL OF OPTIMIZATION, 2021, 17 (02): : 321 - 335
  • [38] Rounding error and perturbation bounds for the symplectic QR factorization
    Singer, S
    Singer, S
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 358 : 255 - 279
  • [39] Lower and upper bounds for the perturbation of linear operators equations
    Jiu, D
    APPLIED MATHEMATICS LETTERS, 2004, 17 (01) : 55 - 58