A cation-anion synergistic doped V-based cathode for high-performance aqueous zinc ion batteries

被引:0
|
作者
Xiang Ding [1 ]
Qiaoying Zhu [1 ,2 ]
Yibing Yang [3 ]
Liangwei Liu [3 ]
Yi Xiao [3 ]
Yin Li [2 ]
Yu Shao [4 ]
Lili Han [3 ]
机构
[1] College of Chemistry and Materials Science, Fujian Normal University
[2] Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University
[3] State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences
[4] Jiujiang De Fu Technology Co,
关键词
D O I
暂无
中图分类号
TM912 [蓄电池]; O646.541 [阴极过程];
学科分类号
摘要
Layered V2O5 cathode holds the merits of high theoretical specific capacity(589 mA h g-1) in aqueous zinc-ion batteries(AZIBs),yet it still suffers from inferior bulk conductivity and structure degradation notably during prolonged cycling.Herein,we ingeniously design cations(Na+/Co2+/Al3+) and anion(F-)synergistic-doped hydrated V2O5·0.48H2O cathode(VNACOF) to enhance the electronic and spatial effects in the bulk.A range of in-situ,ex-situ characterizations,and DFT calculations profoundly clarify the strengthened ionic/electronic conductivities,structural stability,and Zn2+ diffusion kinetics.As a result,the VNACOF displays a superior discharge capacity(529 mA h g-1@0.1 C),rate capabilities(488 mA h g-1@0.5 C,437 mA h g-1@1C),and cycling stability(301 mA h g-1@10 C@5000 cycles@93%)with sufficient energy density(393 W h kg-1),Furthermore,the pouch-cells with high-load(60 mg) also deliver superior cyclic(2 C@178 mA h g-1@1000 cycles@90%) and rate performance(132 mA h g-1@5 C),revealing great application potential for high-energy-density and high-stability AZIBs.
引用
收藏
页码:154 / 162
页数:9
相关论文
共 50 条
  • [41] Unlocking Layered Double Hydroxide as a High-Performance Cathode Material for Aqueous Zinc-Ion Batteries
    Zhao, Yajun
    Zhang, Pengjun
    Liang, Jinrui
    Xia, Xiaoyu
    Ren, Longtao
    Song, Li
    Liu, Wen
    Sun, Xiaoming
    ADVANCED MATERIALS, 2022, 34 (37)
  • [42] High-entropy V-based cathode for high-capacity and long-life aqueous zinc-ion battery
    Ding, Xiang
    Zhu, Qiaoying
    Fan, Yong
    Yang, Yibing
    Liu, Liangwei
    Shao, Yu
    Xiao, Yi
    Wu, Chih-Hung
    Han, Lili
    NANO ENERGY, 2025, 136
  • [43] V2+-doped VS2 with rich defects for high-performance zinc storage in aqueous zinc-ion batteries
    Gao, Jing
    Qi, Xin
    Yang, Bo
    Quan, Haijia
    Hu, Changcheng
    Wang, Xiao-Feng
    Sun, Chenglin
    Wang, Shenghan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 960
  • [44] Spray-dried V2O5 as cathode material for high-performance aqueous zinc-ion batteries
    Roex, Edith
    Boschini, Frederic
    Delaval, Vincent
    Schrijnemakers, Audrey
    Cloots, Rudi
    Mahmoud, Abdelfattah
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 929
  • [45] High-performance Cu0.95V2O5 nanoflowers as cathode materials for aqueous zinc-ion batteries
    Xin Yu
    Fang Hu
    Zhi-Qiang Guo
    Lei Liu
    Gui-Hong Song
    Kai Zhu
    Rare Metals, 2022, 41 : 29 - 36
  • [46] High-performance Cu0.95V2O5 nanoflowers as cathode materials for aqueous zinc-ion batteries
    Xin Yu
    Fang Hu
    Zhi-Qiang Guo
    Lei Liu
    Gui-Hong Song
    Kai Zhu
    Rare Metals, 2022, 41 (01) : 29 - 36
  • [47] High-performance Cu0.95V2O5 nanoflowers as cathode materials for aqueous zinc-ion batteries
    Yu, Xin
    Hu, Fang
    Guo, Zhi-Qiang
    Liu, Lei
    Song, Gui-Hong
    Zhu, Kai
    RARE METALS, 2022, 41 (01) : 29 - 36
  • [48] Dual-Functional Ca-Ion-Doped Layered δ-MnO2 Cathode for High-Performance Aqueous Zinc-Ion Batteries
    Xie, Dongmei
    Wang, Yan
    Tian, Leiwu
    Huang, Haiji
    Sun, Jianyang
    Kim, Dong-Won
    Zhao, Jiachang
    Mao, Jianfeng
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (04)
  • [49] Polypyrrole-Doped NH4V3O8 with Oxygen Vacancies as High-Performance Cathode Material for Aqueous Zinc-Ion Batteries
    Cai, Xuanxuan
    Zhang, Yu
    Cheng, Huanhuan
    Liu, Chenfan
    Wang, Zhiwen
    Ye, Hang
    Pan, Yanliang
    Jia, Dianzeng
    Lin, He
    SMALL, 2023,
  • [50] Cascading V2O3/N-doped carbon hybrid nanosheets as high-performance cathode materials for aqueous zinc-ion batteries
    Yue Niu
    Denghui Wang
    Yingjie Ma
    Linjie Zhi
    Chinese Chemical Letters, 2022, 33 (03) : 1430 - 1434