Multi-Scale Convolutional Attention and Structural Re-Parameterized Residual-Based 3D U-Net for Liver and Liver Tumor Segmentation from CT

被引:0
|
作者
Song, Ziwei [1 ]
Wu, Weiwei [2 ]
Wu, Shuicai [1 ]
机构
[1] Beijing Univ Technol, Coll Chem & Life Sci, Dept Biomed Engn, Beijing 100124, Peoples R China
[2] Capital Med Univ, Coll Biomed Engn, Beijing 100069, Peoples R China
基金
中国国家自然科学基金;
关键词
liver and tumor segmentation; 3D UNet; multi-scale convolutional attention; structural re-parameterization; multi-feature extraction; ATLAS;
D O I
10.3390/s25061814
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Accurate segmentation of the liver and liver tumors is crucial for clinical diagnosis and treatment. However, the task poses significant challenges due to the complex morphology of tumors, indistinct features of small targets, and the similarity in grayscale values between the liver and surrounding organs. To address these issues, this paper proposes an enhanced 3D UNet architecture, named ELANRes-MSCA-UNet. By incorporating a structural re-parameterized residual module (ELANRes) and a multi-scale convolutional attention module (MSCA), the network significantly improves feature extraction and boundary optimization, particularly excelling in segmenting small targets. Additionally, a two-stage strategy is employed, where the liver region is segmented first, followed by the fine-grained segmentation of tumors, effectively reducing false positive rates. Experiments conducted on the LiTS2017 dataset demonstrate that the ELANRes-MSCA-UNet achieved Dice scores of 97.2% and 72.9% for liver and tumor segmentation tasks, respectively, significantly outperforming other state-of-the-art methods. These results validate the accuracy and robustness of the proposed method in medical image segmentation and highlight its potential for clinical applications.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] RMAU-Net: Residual Multi-Scale Attention U-Net For liver and tumor segmentation in CT images
    Jiang, Linfeng
    Ou, Jiajie
    Liu, Ruihua
    Zou, Yangyang
    Xie, Ting
    Xiao, Hanguang
    Bai, Ting
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 158
  • [2] Dilated multi-scale residual attention (DMRA) U-Net: three-dimensional (3D) dilated multi-scale residual attention U-Net for brain tumor segmentation
    Zhang, Lihong
    Li, Yuzhuo
    Liang, Yingbo
    Xu, Chongxin
    Liu, Tong
    Sun, Junding
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (10) : 7249 - 7264
  • [3] Automatic liver tumor segmentation used the cascade multi-scale attention architecture method based on 3D U-Net
    Wu, Yun
    Shen, Huaiyan
    Tan, Yaya
    Shi, Yucheng
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2022, 17 (10) : 1915 - 1922
  • [4] Automatic liver tumor segmentation used the cascade multi-scale attention architecture method based on 3D U-Net
    Yun Wu
    Huaiyan Shen
    Yaya Tan
    Yucheng Shi
    International Journal of Computer Assisted Radiology and Surgery, 2022, 17 : 1915 - 1922
  • [5] U-Net combined with multi-scale attention mechanism for liver segmentation in CT images
    Wu, Jiawei
    Zhou, Shengqiang
    Zuo, Songlin
    Chen, Yiyin
    Sun, Weiqin
    Luo, Jiang
    Duan, Jiantuan
    Wang, Hui
    Wang, Deguang
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2021, 21 (01)
  • [6] U-Net combined with multi-scale attention mechanism for liver segmentation in CT images
    Jiawei Wu
    Shengqiang Zhou
    Songlin Zuo
    Yiyin Chen
    Weiqin Sun
    Jiang Luo
    Jiantuan Duan
    Hui Wang
    Deguang Wang
    BMC Medical Informatics and Decision Making, 21
  • [7] Attention Convolutional U-Net for Automatic Liver Tumor Segmentation
    Bibi, Asima
    Khan, Muhammad Salman
    2021 INTERNATIONAL CONFERENCE ON FRONTIERS OF INFORMATION TECHNOLOGY (FIT 2021), 2021, : 102 - 107
  • [8] LIVER VESSELS SEGMENTATION BASED ON 3D RESIDUAL U-NET
    Yu, Wei
    Fang, Bin
    Liu, Yongqing
    Gao, Mingqi
    Zheng, Shenhai
    Wang, Yi
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 250 - 254
  • [9] Aggregating Multi-scale Prediction Based on 3D U-Net in Brain Tumor Segmentation
    Chen, Minglin
    Wu, Yaozu
    Wu, Jianhuang
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT I, 2020, 11992 : 142 - 152
  • [10] A U-Net Based Multi-scale Feature Extraction for Liver Tumour Segmentation in CT Images
    Gong, Ming
    Soraghan, John
    Di Caterina, Gaetano
    Grose, Derek
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, VOL. 1, 2022, 878 : 1013 - 1020