Multi-Scale Convolutional Attention and Structural Re-Parameterized Residual-Based 3D U-Net for Liver and Liver Tumor Segmentation from CT

被引:0
|
作者
Song, Ziwei [1 ]
Wu, Weiwei [2 ]
Wu, Shuicai [1 ]
机构
[1] Beijing Univ Technol, Coll Chem & Life Sci, Dept Biomed Engn, Beijing 100124, Peoples R China
[2] Capital Med Univ, Coll Biomed Engn, Beijing 100069, Peoples R China
基金
中国国家自然科学基金;
关键词
liver and tumor segmentation; 3D UNet; multi-scale convolutional attention; structural re-parameterization; multi-feature extraction; ATLAS;
D O I
10.3390/s25061814
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Accurate segmentation of the liver and liver tumors is crucial for clinical diagnosis and treatment. However, the task poses significant challenges due to the complex morphology of tumors, indistinct features of small targets, and the similarity in grayscale values between the liver and surrounding organs. To address these issues, this paper proposes an enhanced 3D UNet architecture, named ELANRes-MSCA-UNet. By incorporating a structural re-parameterized residual module (ELANRes) and a multi-scale convolutional attention module (MSCA), the network significantly improves feature extraction and boundary optimization, particularly excelling in segmenting small targets. Additionally, a two-stage strategy is employed, where the liver region is segmented first, followed by the fine-grained segmentation of tumors, effectively reducing false positive rates. Experiments conducted on the LiTS2017 dataset demonstrate that the ELANRes-MSCA-UNet achieved Dice scores of 97.2% and 72.9% for liver and tumor segmentation tasks, respectively, significantly outperforming other state-of-the-art methods. These results validate the accuracy and robustness of the proposed method in medical image segmentation and highlight its potential for clinical applications.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Deep 3D attention CLSTM U-Net based automated liver segmentation and volumetry for the liver transplantation in abdominal CT volumes
    Jin Gyo Jeong
    Sangtae Choi
    Young Jae Kim
    Won-Suk Lee
    Kwang Gi Kim
    Scientific Reports, 12
  • [22] Deep 3D attention CLSTM U-Net based automated liver segmentation and volumetry for the liver transplantation in abdominal CT volumes
    Jeong, Jin Gyo
    Choi, Sangtae
    Kim, Young Jae
    Lee, Won-Suk
    Kim, Kwang Gi
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [23] Automatic Liver Segmentation in CT Volumes with Improved 3D U-net
    Liu, Chunlei
    Cui, Deqi
    Shi, Dejun
    Hu, Zhiqiang
    Qin, Yuan
    Lang, Jinyi
    ISICDM 2018: PROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON IMAGE COMPUTING AND DIGITAL MEDICINE, 2018, : 78 - 82
  • [24] Multi-scale Masked 3-D U-Net for Brain Tumor Segmentation
    Xu, Yanwu
    Gong, Mingming
    Fu, Huan
    Tao, Dacheng
    Zhang, Kun
    Batmanghelich, Kayhan
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 222 - 233
  • [25] MSN-Net: a multi-scale context nested U-Net for liver segmentation
    Fan, Tongle
    Wang, Guanglei
    Wang, Xia
    Li, Yan
    Wang, Hongrui
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (06) : 1089 - 1097
  • [26] MSN-Net: a multi-scale context nested U-Net for liver segmentation
    Tongle Fan
    Guanglei Wang
    Xia Wang
    Yan Li
    Hongrui Wang
    Signal, Image and Video Processing, 2021, 15 : 1089 - 1097
  • [27] Tumor Segmentation Based on Deeply Supervised Multi-Scale U-Net
    Wang, Lei
    Wang, Bo
    Xu, Zhenghua
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 746 - 749
  • [28] MSDS-UNet: A multi-scale deeply supervised 3D U-Net for automatic segmentation of lung tumor in CT
    Yang, Jinzhu
    Wu, Bo
    Li, Lanting
    Cao, Peng
    Zaiane, Osmar
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2021, 92
  • [29] mfeeU-Net: A multi-scale feature extraction and enhancement U-Net for automatic liver segmentation from CT Images
    Liu, Jun
    Yan, Zhenhua
    Zhou, Chaochao
    Shao, Liren
    Han, Yuanyuan
    Song, Yusheng
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (05) : 7784 - 7801
  • [30] RMCNet: A Liver Cancer Segmentation Network Based on 3D Multi-Scale Convolution, Attention, and Residual Path
    Zhang, Zerui
    Gao, Jianyun
    Li, Shu
    Wang, Hao
    BIOENGINEERING-BASEL, 2024, 11 (11):