RIFL: A Fair Incentive Mechanism for Federated Learning

被引:0
|
作者
Tang, Huanrong
Liao, Xinghai [1 ]
Ouyang, Jianquan
机构
[1] Xiangtan Univ, Sch Comp Sci, Xiangtan, Hunan, Peoples R China
关键词
Federated Learning; Incentive Mechanism; Malicious Detection;
D O I
10.1007/978-981-97-5663-6_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
FederatedLearning (FL) is an innovative framework that enables workers to collaboratively train a global shared model in a decentralized manner. Instead of transferring raw data to a centralized location, workers train the shared model locally. However, participating in federated learning tasks consumes communication resources and computing power and poses privacy risks. Naturally, workers are reluctant to engage in training without reasonable rewards. Moreover, there is a risk of malicious workers submitting harmful local models to undermine the global model and gain undeserved rewards. To tackle these challenges, we propose RIFL, which can fairly motivate honest workers to participate in FL tasks and prevent malicious workers from corrupting the global shared model. We employ centered kernel alignment (CKA) to assess the similarity between the local models submitted by workers and the global model. Subsequently, we utilize a similarity clustering-based approach to identify and eliminate local models submitted by potentially malicious workers. Additionally, a reward allocation mechanism based on reputation and data contribution is designed to motivate workers with high-quality data to participate in FL tasks and prevent intermittent attackers from gaining undeserved rewards. Finally, extensive experiments on benchmark datasets show that RIFL achieves high fairness and robustness, improving global model accuracy and motivating workers with high-quality data to participate in FL tasks under non-IID and unreliable scenarios.
引用
收藏
页码:365 / 377
页数:13
相关论文
共 50 条
  • [1] FIFL: A Fair Incentive Mechanism for Federated Learning
    Gao, Liang
    Li, Li
    Chen, Yingwen
    Zheng, Wenli
    Xu, ChengZhong
    Xu, Ming
    50TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, 2021,
  • [2] FRIMFL: A Fair and Reliable Incentive Mechanism in Federated Learning
    Ahmed, Abrar
    Choi, Bong Jun
    ELECTRONICS, 2023, 12 (15)
  • [3] A Secure and Fair Federated Learning Framework Based on Consensus Incentive Mechanism
    Zhu, Feng
    Hu, Feng
    Zhao, Yanchao
    Chen, Bing
    Tan, Xiaoyang
    MATHEMATICS, 2024, 12 (19)
  • [4] FDFL: Fair and Discrepancy-Aware Incentive Mechanism for Federated Learning
    Chen, Zhe
    Zhang, Haiyan
    Li, Xinghua
    Miao, Yinbin
    Zhang, Xiaohan
    Zhang, Man
    Ma, Siqi
    Deng, Robert H.
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 8140 - 8154
  • [5] FedFAIM: A Model Performance-Based Fair Incentive Mechanism for Federated Learning
    Shi, Zhuan
    Zhang, Lan
    Yao, Zhenyu
    Lyu, Lingjuan
    Chen, Cen
    Wang, Li
    Wang, Junhao
    Li, Xiang-Yang
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (06) : 1038 - 1050
  • [6] A Hierarchical Incentive Mechanism for Federated Learning
    Huang, Jiwei
    Ma, Bowen
    Wu, Yuan
    Chen, Ying
    Shen, Xuemin
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 12731 - 12747
  • [7] A Learning-Based Incentive Mechanism for Federated Learning
    Zhan, Yufeng
    Li, Peng
    Qu, Zhihao
    Zeng, Deze
    Guo, Song
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (07): : 6360 - 6368
  • [8] Towards Fair Graph Federated Learning via Incentive Mechanisms
    Pan, Chenglu
    Xu, Jiarong
    Yu, Yue
    Yang, Ziqi
    Wu, Qingbiao
    Wang, Chunping
    Chen, Lei
    Yang, Yang
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 13, 2024, : 14499 - 14507
  • [9] A Survey of Incentive Mechanism Design for Federated Learning
    Zhan, Yufeng
    Zhang, Jie
    Hong, Zicong
    Wu, Leijie
    Li, Peng
    Guo, Song
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2022, 10 (02) : 1035 - 1044
  • [10] Incentive Mechanism Design for Federated Learning and Unlearning
    Ding, Ningning
    Sun, Zhenyu
    Wei, Ermin
    Berry, Randall
    PROCEEDINGS OF THE 2023 INTERNATIONAL SYMPOSIUM ON THEORY, ALGORITHMIC FOUNDATIONS, AND PROTOCOL DESIGN FOR MOBILE NETWORKS AND MOBILE COMPUTING, MOBIHOC 2023, 2023, : 11 - 20