Research on Network Flow Anomaly Identification and Detection Model based on Deep Learning

被引:0
|
作者
Wan, Yidan [1 ]
Zhang, Deqing [1 ]
Liu, Zhihui [2 ]
机构
[1] Anhui Sanlian Univ, Modern Ind Coll Intelligent Transportat, Hefei, Peoples R China
[2] Anhui Sanlian Univ, Ind Coll Model Wellness, Hefei, Peoples R China
关键词
Network abnormal traffic detection; CVAE; LSTM; deep learning; classification;
D O I
10.1145/3662739.3662742
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, the network scale is gradually expanding, and the number of netizens is constantly increasing. With the rapid development of the network in the direction of diversification, the traditional intrusion detection system (IDS) has problems such as low accuracy and high false alarm rate, which are difficult to guarantee the current network security. In this paper, the author proposes a method that combines conditional variational autoencoder (CVAE) and long-short-term memory (LSTM) network to identify and detect abnormal flow, and then some key technologies of traffic detection model is discussed. At present, the main problems in network traffic anomaly detection include imbalanced data distribution and low detection efficiency of traditional models. Due to the fact that most network detection data often has the characteristics of a small number of attack category samples and imbalanced data distribution, CVAE is used to enhance and expand the attack samples to obtain balanced data samples in this paper, and then the LSTM network is used for anomaly identification and detection. In order to prove the superiority of the model, the author evaluates the model through the accuracy, precision, recall and F1. Compared with traditional machine learning methods, the model has higher accuracy and lower training complexity.
引用
收藏
页码:710 / 716
页数:7
相关论文
共 50 条
  • [1] Network Anomaly Detection and Identification Based on Deep Learning Methods
    Zhu, Mingyi
    Ye, Kejiang
    Xu, Cheng-Zhong
    CLOUD COMPUTING - CLOUD 2018, 2018, 10967 : 219 - 234
  • [2] Unsupervised Learning for Network Flow based Anomaly Detection in the Era of Deep Learning
    Kabir, Md Ahsanul
    Luo, Xiao
    2020 IEEE SIXTH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (BIGDATASERVICE 2020), 2020, : 166 - 169
  • [3] Vulnerability of Deep Learning Model based Anomaly Detection in Vehicle Network
    Wang, Yi
    Chia, Dan Wei Ming
    Ha, Yajun
    2020 IEEE 63RD INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2020, : 293 - 296
  • [4] Research on Multiple Classification Detection for Network Traffic Anomaly Based on Deep Learning
    Tong, HaiZhou
    2022 6TH INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND INTELLIGENT CONTROL, ISCSIC, 2022, : 12 - 16
  • [5] Network Anomaly Detection with Deep Learning
    Cekmez, Ugur
    Erdem, Zeki
    Yavuz, Ali Gokhan
    Sahingoz, Ozgur Koray
    Buldu, Ali
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [6] Design of IoT Network using Deep Learning-based Model for Anomaly Detection
    Varalakshmi, Sudha
    Premnath, S. P.
    Yogalakshmi, V
    Vijayalakshmi, P.
    Kavitha, V. R.
    Vimalarani, G.
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 216 - 220
  • [7] An optimized LSTM-based deep learning model for anomaly network intrusion detection
    Dash, Nitu
    Chakravarty, Sujata
    Rath, Amiya Kumar
    Giri, Nimay Chandra
    Aboras, Kareem M.
    Gowtham, N.
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [8] Anomaly-based Network Intrusion Detection Model using Deep Learning in Airports
    Sczari, Behrooz
    Moller, Dietmar P. F.
    Deutschmann, Andreas
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (IEEE TRUSTCOM) / 12TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA SCIENCE AND ENGINEERING (IEEE BIGDATASE), 2018, : 1725 - 1729
  • [9] A survey of deep learning-based network anomaly detection
    Donghwoon Kwon
    Hyunjoo Kim
    Jinoh Kim
    Sang C. Suh
    Ikkyun Kim
    Kuinam J. Kim
    Cluster Computing, 2019, 22 : 949 - 961
  • [10] A Deep Learning pipeline for Network Anomaly Detection based on Autoencoders
    Ferraro, Antonino
    Galli, Antonio
    La Gatta, Valerio
    Postiglione, Marco
    2022 IEEE INTERNATIONAL CONFERENCE ON METROLOGY FOR EXTENDED REALITY, ARTIFICIAL INTELLIGENCE AND NEURAL ENGINEERING (METROXRAINE), 2022, : 260 - 264