Multi-level feature splicing 3D network based on multi-task joint learning for video anomaly detection

被引:0
|
作者
Li, Yang [1 ]
Tong, Guoxiang [1 ]
机构
[1] Univ Shanghai Sci & Technol, 516 Jungong Rd, Shanghai 200093, Peoples R China
关键词
Video anomaly detection; Multi-task learning; Pseudo-anomaly; Feature splicing; Attention gating; ABNORMAL EVENT DETECTION;
D O I
10.1016/j.neucom.2025.129964
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In video anomaly detection research, deep learning is dedicated to identifying anomalous events accurately and efficiently. However, due to the scarcity and diversity of anomaly samples, previous methods have not adequately taken into account important information about location and timing. In addition, the overpowered generalization ability of the models leads to the fact that anomalies can also be well reconstructed or predicted. To address the above challenges, we propose a 3D network based on multi-level feature splicing with joint multi-task learning. The network is improved by the autoencoder (AE) as a backbone network. Firstly, we design a normal sample training task and a Gaussian noise task from a spatial perspective to enhance the reconstruction of positive samples. The frame-skipping task and the inverse sequence task of the video are designed from the temporal perspective to suppress the reconstruction ability of negative samples. Secondly, we use multi-level feature splicing in the encoding and decoding process to equip the network with the ability to explore sufficient information from the full scale. At the same time, we use an attention gating module to filter redundant features. The results show that our network is competitive with state-of-the-art methods. In terms of AUC, UCSD Ped2 achieves 99.3%, CUHK Avenue achieves 88.4%, and ShanghaiTech Campus achieves 74.2%.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with Multi-Task Brain Age Prediction
    Bengs, Marcel
    Behrendt, Finn
    Laves, Max-Heinrich
    Krueger, Julia
    Opfer, Roland
    Schlaefer, Alexander
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [32] Multi-task Contrastive Learning for Anomaly Detection on Attributed Networks
    Zhang, Junjie
    Ding, Yuxin
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT I, PAKDD 2024, 2024, 14645 : 15 - 26
  • [33] Microcrack Segmentation of 3D CT Images Based on Multi-Task Learning
    Peng, Junjie
    Li, Wenbin
    Liao, Suyu
    Zhu, Yining
    IEEE ACCESS, 2024, 12 : 138192 - 138200
  • [34] A Simple and Efficient Multi-task Network for 3D Object Detection and Road Understanding
    Feng, Di
    Zhou, Yiyang
    Xu, Chenfeng
    Tomizuka, Masayoshi
    Zhan, Wei
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 7067 - 7074
  • [35] Multi-scene citrus detection based on multi-task deep learning network
    Wen, Chenxin
    Zhang, Hui
    Li, Honghao
    Li, Hongwen
    Chen, Jinhai
    Guo, Hangge
    Cheng, Shihui
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 912 - 919
  • [36] Multi-Task Learning Based Network Embedding
    Wang, Shanfeng
    Wang, Qixiang
    Gong, Maoguo
    FRONTIERS IN NEUROSCIENCE, 2020, 13
  • [37] MLFINet : A multi-level feature interaction 3D medical image segmentation network
    Liao, Chuanlin
    Gou, Xiaolin
    Polat, Kemal
    Zhou, Jingchun
    Lin, Yi
    NEUROCOMPUTING, 2025, 618
  • [38] Machining feature recognition based on a novel multi-task deep learning network
    Zhang, Hang
    Zhang, Shusheng
    Zhang, Yajun
    Liang, Jiachen
    Wang, Zhen
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2022, 77
  • [39] Forecast of Short-Term Passenger Flow in Multi-Level Rail Transit Network Based on a Multi-Task Learning Model
    Feng, Fenling
    Zou, Zhaohui
    Liu, Chengguang
    Zhou, Qianran
    Liu, Chang
    SUSTAINABILITY, 2023, 15 (04)
  • [40] Multi-task prediction for transient stability using, multi-level feature fusion based SPP-net
    Chen Q.-C.
    Han S.
    Mao J.-Y.
    Kongzhi yu Juece/Control and Decision, 2022, 37 (05): : 1279 - 1288