Unity among the diverse RNA-guided CRISPR-Cas interference mechanisms

被引:1
|
作者
Ganguly, Chhandosee [1 ]
Rostami, Saadi [1 ]
Long, Kole [1 ]
Aribam, Swarmistha Devi [1 ]
Rajan, Rakhi [1 ]
机构
[1] Univ Oklahoma, Dept Chem & Biochem, Price Family Fdn Inst Struct Biol, Stephenson Life Sci Res Ctr, Norman, OK 73019 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
TARGET DNA RECOGNITION; R-LOOP FORMATION; RIBOZYME-MEDIATED CLEAVAGE; IN-VITRO RECONSTITUTION; PROCESSES PRE-CRRNA; STRUCTURAL BASIS; CRYSTAL-STRUCTURE; SURVEILLANCE COMPLEX; ESCHERICHIA-COLI; ADAPTIVE IMMUNITY;
D O I
10.1016/j.jbc.2024.107295
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are adaptive immune systems that protect bacteria and archaea from invading mobile genetic elements (MGEs). The Cas protein-CRISPR RNA (crRNA) complex uses complementarity of the crRNA "guide" region to specifically recognize the invader genome. CRISPR effectors that perform targeted destruction of the foreign genome have emerged independently as multi-subunit protein complexes (Class 1 systems) and as single multidomain proteins (Class 2). These different CRISPR-Cas systems can cleave RNA, DNA, and protein in an RNA-guided manner to eliminate the invader, and in some cases, they initiate programmed cell death/dormancy. The versatile mechanisms of the different CRISPR-Cas systems to target and destroy nucleic acids have been adapted to develop various programmable-RNA-guided tools and have revolutionized the development of fast, accurate, and accessible genomic applications. In this review, we present the structure and interference mechanisms of different CRISPR-Cas systems and an analysis of their unified features. The three types of Class 1 systems (I, III, and IV) have a conserved right-handed helical filamentous structure that provides a backbone for sequencespecific targeting while using unique proteins with distinct mechanisms to destroy the invader. Similarly, all three Class 2 types (II, V, and VI) have a bilobed architecture that binds the RNA-DNA/RNA hybrid and uses different nuclease domains to cleave invading MGEs. Additionally, we highlight the mechanistic similarities of CRISPR-Cas enzymes with other RNAcleaving enzymes and briefly present the evolutionary routes of the different CRISPR-Cas systems.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] High Precision Genome Editing by RNA-Guided CRISPR Cas9
    Hsu, Patrick D.
    Ran, Fei Ann
    Scott, David A.
    Lin, Chie-yu
    Gootenberg, Jonathan S.
    Konermann, Silvana
    Zhang, Feng
    MOLECULAR THERAPY, 2014, 22 : S216 - S216
  • [32] CRISPR-Cas: biology, mechanisms and relevance
    Hille, Frank
    Charpentier, Emmanuelle
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2016, 371 (1707)
  • [33] Mechanisms regulating the CRISPR-Cas systems
    Zakrzewska, Marta
    Burmistrz, Michal
    FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [34] CRISPR mechanism: RNA-guided DNA/RNA targeting
    Mojica, F.
    Almendros, C.
    Guzman, N.
    Gomez-Tavira, B.
    Maldonado, R.
    Garcia-Martinez, J.
    FEBS JOURNAL, 2017, 284 : 61 - 61
  • [35] Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration
    Sanne E. Klompe
    Phuc L. H. Vo
    Tyler S. Halpin-Healy
    Samuel H. Sternberg
    Nature, 2019, 571 : 219 - 225
  • [36] RNA-guided gene activation by CRISPR-Cas9–based transcription factors
    Pablo Perez-Pinera
    D Dewran Kocak
    Christopher M Vockley
    Andrew F Adler
    Ami M Kabadi
    Lauren R Polstein
    Pratiksha I Thakore
    Katherine A Glass
    David G Ousterout
    Kam W Leong
    Farshid Guilak
    Gregory E Crawford
    Timothy E Reddy
    Charles A Gersbach
    Nature Methods, 2013, 10 : 973 - 976
  • [37] RNA-guided gene activation by CRISPR-Cas9-based transcription factors
    Perez-Pinera, Pablo
    Kocak, D. Dewran
    Vockley, Christopher M.
    Adler, Andrew F.
    Kabadi, Ami M.
    Polstein, Lauren R.
    Thakore, Pratiksha I.
    Glass, Katherine A.
    Ousterout, David G.
    Leong, Kam W.
    Guilak, Farshid
    Crawford, Gregory E.
    Reddy, Timothy E.
    Gersbach, Charles A.
    NATURE METHODS, 2013, 10 (10) : 973 - +
  • [38] Biochemical characterization of RNA-guided ribonuclease activities for CRISPR-Cas9 systems
    Gramelspacher, Max J.
    Hou, Zhonggang
    Zhang, Yan
    METHODS, 2020, 172 : 32 - 41
  • [39] Structural Basis for the RNA-Guided Ribonuclease Activity of CRISPR-Cas13d
    Zhang, Cheng
    Konermann, Silvana
    Brideau, Nicholas J.
    Lotfy, Peter
    Wu, Xuebing
    Novick, Scott J.
    Strutzenberg, Timothy
    Griffin, Patrick R.
    Hsu, Patrick D.
    Lyumkis, Dmitry
    CELL, 2018, 175 (01) : 212 - +
  • [40] Defining Genome-Wide Off-Target Cleavage Profiles of CRISPR-Cas RNA-Guided Nucleases Using GUIDE-Seq
    Tsai, Shengdar Q.
    Zheng, Zongli
    Nguyen, Nhu T.
    Liebers, Matthew
    Topkar, Ved V.
    Thapar, Vishal
    Wyvekens, Nicolas
    Khayter, Cyd
    MOLECULAR THERAPY, 2015, 23 : S274 - S274