HEAT TRANSFER AND FLOW CHARACTERISTICS OF FLOW BOILING IN MANIFOLD MICROCHANNEL

被引:0
|
作者
Xu, Jinjin [1 ]
Zhang, Jingzhi [1 ]
Xin, Gongming [1 ]
Li, Wei [2 ]
机构
[1] Shandong Univ, Sch Energy & Power Engn, Jinan 250061, Peoples R China
[2] Zhejiang Univ, Dept Energy Engn, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Staggered fins; Flow boiling; Manifold microchannels; Heat transfer; SINK;
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
Nowadays, there is a growing emphasis on the miniaturization and integration of electronic equipment in the field of advanced engineering. The increasing power of electronic devices and the trend towards miniaturization have resulted in higher levels of heat generation. Manifold Microchannels (MMC) heat sinks have emerged as effective solutions for managing the thermal challenges posed by high heat flux electronic devices. In comparison to traditional rectangular microchannels, the staggered fins in MMC induce stronger flow field disturbances, leading to a thinner thermal boundary layer and higher heat transfer coefficients. This study numerically investigates the thermal characteristics and pressure loss of flow boiling in staggered finned microchannels. The Volume of Fluid (VOF) method is utilized to capture the two-phase interfaces. All simulation cases are conducted under laminar flow conditions, with consideration given to solid-fluid thermal coupling. Specifically, the two-phase flow with HFE-7100 is analyzed. The inlet boundary is set at a constant velocity of 0.35 m/s, 0.565 m/s, and 0.78 m/s, while the heat flux on the bottom surface ranges from 300 W/cm(2) to 450 W/cm(2) at 319.15 K. The findings indicate that the heat transfer characteristics of staggered fins manifold microchannels outperform those of traditional rectangular manifold microchannels, except in the case of two-phase boiling flow at high heat flux and low flow rates.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Experimental and numerical investigations of heat transfer and flow characteristics during flow boiling in straight and diverging PDMS microchannel
    Alugoju, Uday Kumar
    Dubey, Satish Kumar
    Javed, Arshad
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2023, 33 (09)
  • [42] Numerical investigation of flow boiling heat transfer in manifold microchannels
    Yuan, Yi
    Chen, Li
    Zhang, Chuangde
    Li, Xiaoyu
    Tao, Wen-Quan
    APPLIED THERMAL ENGINEERING, 2022, 217
  • [43] Characteristics of flow boiling oscillations in silicon microchannel heat sinks
    Muwanga, R.
    Hassan, I.
    MacDonald, R.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2007, 129 (10): : 1341 - 1351
  • [44] Onset of Boiling, Heat Transfer, and Flow Patterns of Flow Boiling on the Superhydrophobic Porous Copper Surface in a Microchannel
    Lin, Yuhao
    Li, Junye
    Sun, Jia
    Li, Wei
    Cao, Yanlong
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2021, 143 (08):
  • [45] Flow boiling in a microchannel heat sink
    Liu, Dong
    Garimella, Suresh V.
    PROCEEDINGS OF THE ASME HEAT TRANSFER DIVISION 2005, VOL 1, 2005, 376-1 : 633 - 642
  • [46] Effects of electric field on flow boiling heat transfer characteristics in a microchannel heat sink with various orientations
    Li, Hong-Wei
    Chang, Tian-Liang
    Du, Chang-He
    Huang, Na
    Jia, Yu-Ting
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 181
  • [47] Heat transfer and flow issues in manifold microchannel heat sinks: a CFD approach
    Poh, ST
    Ng, EYK
    2ND ELECTRONICS PACKAGING TECHNOLOGY CONFERENCE, PROCEEDINGS, 1998, : 246 - 250
  • [48] FLOW BOILING HEAT TRANSFER OF R134a IN A MICROCHANNEL HEAT SINK
    do Nascimento, Francisco J.
    Leao, Hugo L. S. L.
    Ribatski, Gherhardt
    PROCEEDINGS OF THE ASME 10TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS AND MINICHANNELS 2012, 2012, : 29 - 38
  • [49] Improvement of flow and heat transfer performance of manifold microchannel with porous fins
    Chen, Chaowei
    Li, Fei
    Wang, Xinyu
    Zhang, Jingzhi
    Xin, Gongming
    APPLIED THERMAL ENGINEERING, 2022, 206
  • [50] Experiment investigation on flow boiling heat transfer in a bidirectional counter-flow microchannel heat sink
    Li, Yun
    Wu, Huiying
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 187