On minimal presentations of numerical monoids

被引:0
|
作者
Moscariello, Alessio [1 ]
Sammartano, Alessio [2 ]
机构
[1] Univ Catania, Dipartimento Matemat & Informat, Catania, Italy
[2] Politecn Milan, Dipartimento Matemat, Milan, Italy
关键词
SEMIGROUPS; GENERATORS; IDEALS;
D O I
10.1112/blms.70005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the classical problem of determining the largest possible cardinality of a minimal presentation of a numerical monoid with given embedding dimension and multiplicity. Very few values of this cardinality are known. In addressing this problem, we apply tools from Hilbert functions and free resolutions of artinian standard graded algebras. This approach allows us to solve the problem in many cases and, at the same time, identify subtle difficulties in the remaining cases. As a by-product of our analysis, we deduce results for the corresponding problem for the type of a numerical monoid.
引用
收藏
页码:878 / 894
页数:17
相关论文
共 50 条
  • [31] Partial mirror symmetry, lattice presentations and algebraic monoids
    Everitt, Brent
    Fountain, John
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 : 414 - 450
  • [32] Presentations for some monoids of partial transformations on a finite chain
    Fernandes, VH
    Gomes, GMS
    Jesus, MM
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (02) : 587 - 604
  • [33] Knuth's Coherent Presentations of Plactic Monoids of Type A
    Hage, Nohra
    Malbos, Philippe
    ALGEBRAS AND REPRESENTATION THEORY, 2017, 20 (05) : 1259 - 1288
  • [34] Knuth’s Coherent Presentations of Plactic Monoids of Type A
    Nohra Hage
    Philippe Malbos
    Algebras and Representation Theory, 2017, 20 : 1259 - 1288
  • [35] Minimal generating sets for matrix monoids
    Hivert, F.
    Mitchell, J. D.
    Smith, F. L.
    Wilson, W. A.
    JOURNAL OF SYMBOLIC COMPUTATION, 2025, 129
  • [36] The set of minimal distances in Krull monoids
    Geroldinger, Alfred
    Zhong, Qinghai
    ACTA ARITHMETICA, 2016, 173 (02) : 97 - 120
  • [37] On rigid minimal presentations
    Bautista, R
    Zuazua, R
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (04) : 1277 - 1293
  • [38] PROPERTIES OF MINIMAL GENERATING SYSTEMS OF MONOIDS
    DOYEN, J
    SEMIGROUP FORUM, 1991, 42 (03) : 333 - 343
  • [39] MAXIMAL AND MINIMAL C-MONOIDS
    Vargas, Edith Mireya
    DEMONSTRATIO MATHEMATICA, 2011, 44 (03) : 615 - 627
  • [40] ON DELTA SETS OF NUMERICAL MONOIDS
    Bowles, Craig
    Chapman, Scott T.
    Kaplan, Nathan
    Reiser, Daniel
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2006, 5 (05) : 695 - 718