HausaNLP at SemEval-2024 Task 1: Textual Relatedness Analysis for Semantic Representation of Sentences

被引:0
|
作者
Salahudeen, Saheed Abdullahi [1 ,2 ]
Lawan, Falalu Ibrahim [2 ]
Yusuf, Aliyu [3 ]
Imam, Amina Abubakar [4 ]
Aliyu, Lukman
Rabiu, Nur Bala [5 ]
Ahmad, Mahmoud Said
Mohammed, Idi [6 ]
Shuaibu, Aliyu Rabiu [7 ]
Musa, Alamin
Ali, Auwal Shehu [8 ]
Nie, Zedong [1 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Beijing, Peoples R China
[2] Kaduna State Univ, Nasarawa, Nigeria
[3] Univ Teknol PETRONAS, Seri Iskandar, Perak, Malaysia
[4] Univ Abuja, Abuja, Nigeria
[5] Khalifa Isyaka Rabiu Univ, Kano, Nigeria
[6] AUST, Galadima, Nigeria
[7] Nile Univ, Abuja, Nigeria
[8] Bayero Univ Kano, Rimin Gata, Nigeria
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semantic Text Relatedness (STR), a measure of meaning similarity between text elements, has become a key focus in the field of Natural Language Processing (NLP). We describe SemEval-2024 task 1 on Semantic Textual Relatedness featuring three tracks: supervised learning, unsupervised learning and cross-lingual learning across African and Asian languages including Afrikaans, Algerian Arabic, Amharic, Hausa, Hindi, Indonesian, Kinyarwanda, Marathi, Moroccan Arabic, Modern Standard Arabic, Punjabi, Spanish, and Telugu. Our goal is to analyse the semantic representation of sentences textual relatedness trained on mBert, all-MiniLM-L6-v2 and Bert-Based-uncased. The effectiveness of these models is evaluated using the Spearman Correlation metric, which assesses the strength of the relationship between paired data. The finding reveals the viability of transformer models in multilingual STR tasks.
引用
收藏
页码:188 / 192
页数:5
相关论文
共 50 条
  • [11] USTCCTSU at SemEval-2024 Task 1: Reducing Anisotropy for Cross-lingual Semantic Textual Relatedness
    Li, Jianjian
    Liang, Shengwei
    Liao, Yong
    Deng, Hongping
    Yu, Haiyang
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 881 - 887
  • [12] All-MPNet at SemEval-2024 Task 1: Application of MPNet for Evaluating Semantic Textual Relatedness
    Siino, Marco
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 379 - 384
  • [13] scaLAR SemEval-2024 Task 1: Semantic Textual Relatednes for English
    Kumar, M. Hemanth
    Kumar, Anand M.
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 902 - 906
  • [14] SATLab at SemEval-2024 Task 1: A Fully Instance-Specific Approach for Semantic Textual Relatedness Prediction
    Bestgen, Yves
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 95 - 100
  • [15] PEAR at SemEval-2024 Task 1: Pair Encoding with Augmented Re-sampling for Semantic Textual Relatedness
    Jorgensen, Tollef Emil
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 1405 - 1411
  • [16] WarwickNLP at SemEval-2024 Task 1: Low-Rank Cross-Encoders for Efficient Semantic Textual Relatedness
    Ebrahim, Fahad
    Joy, Mike
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 246 - 252
  • [17] NLP-LISAC at SemEval-2024 Task 1: Transformer-based approaches for Determining Semantic Textual Relatedness
    Benlahbib, Abdessamad
    Fahfouh, Anass
    Alami, Hamza
    Boumhidi, Achraf
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 213 - 217
  • [18] Tubingen-CL at SemEval-2024 Task 1: Ensemble Learning for Semantic Relatedness Estimation
    Zhang, Leixin
    Coeltekin, Cagri
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 1019 - 1025
  • [19] NLP_STR_teamS at SemEval-2024 Task1: Semantic Textual Relatedness based on MASK Prediction and BERT Model
    Su, Lianshuang
    Zhou, Xiaobing
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 337 - 341
  • [20] NRK at SemEval-2024 Task 1: Semantic Textual Relatedness through Domain Adaptation and Ensemble Learning on BERT-based models
    Nguyen Tuan Kiet
    Dang Van Thin
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 76 - 81