Graph Attention Network Based Deep Reinforcement Learning for Voltage/var Control of Topologically Variable Power System

被引:0
|
作者
Liu, Xiaofei [1 ]
Zhang, Pei [1 ]
Xie, Hua [1 ]
Lu, Xuegang [2 ]
Wu, Xiangyu [1 ]
Liu, Zhao [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Elect Engn, Beijing 100044, Peoples R China
[2] Yunnan Elect Power Dispatching & Control Ctr, Kunming 650011, Peoples R China
关键词
Reactive power; Training; Voltage control; Topology; Power system stability; Optimization; Network topology; Uncertainty; Power systems; Generators; Voltage/var control; grid topology; renewable energy; graph attention network; deep reinforcement learning; FLOW;
D O I
10.35833/MPCE.2023.000712
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The high proportion of renewable energy integration and the dynamic changes in grid topology necessitate the enhancement of voltage/var control (VVC) to manage voltage fluctuations more rapidly. Traditional model-based control algorithms are becoming increasingly incompetent for VVC due to their high model dependence and slow online computation speed. To alleviate these issues, this paper introduces a graph attention network (GAT) based deep reinforcement learning for VVC of topologically variable power system. Firstly, combining the physical information of the actual power grid, a physics-informed GAT is proposed and embedded into the proximal policy optimization (PPO) algorithm. The GAT-PPO algorithm can capture topological and spatial correlations among the node features to tackle topology changes. To address the slow training, the ReliefF -S algorithm identifies critical state variables, significantly reducing the dimensionality of state space. Then, the training samples retained in the experience buffer are designed to mitigate the sparse reward issue. Finally, the validation on the modified IEEE 39-bus system and an actual power grid demonstrates superior performance of the proposed algorithm compared with state-of-the-art algorithms, including PPO algorithm and twin delayed deep deterministic policy gradient (TD3) algorithm. The proposed algorithm exhibits enhanced convergence during training, faster solution speed, and improved VVC performance, even in scenarios involving grid topology changes and increased renewable energy integration. Meanwhile, in the adopted cases, the network loss is reduced by 6.9%, 10.80%, and 7.70%, respectively, demonstrating favorable economic outcomes.
引用
收藏
页码:215 / 227
页数:13
相关论文
共 50 条
  • [21] Intelligent Task Allocation for Mobile Crowdsensing With Graph Attention Network and Deep Reinforcement Learning
    Xu, Chenghao
    Song, Wei
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (02): : 1032 - 1048
  • [22] Volt-VAR Control in Power Distribution Systems with Deep Reinforcement Learning
    Wang, Wei
    Yu, Nanpeng
    Shi, Jie
    Gao, Yuanqi
    2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONTROL, AND COMPUTING TECHNOLOGIES FOR SMART GRIDS (SMARTGRIDCOMM), 2019,
  • [23] Optimal real-time Voltage/Var control for distribution network: Droop-control based multi-agent deep reinforcement learning
    Li, Peishuai
    Shen, Jiawei
    Wu, Zaijun
    Yin, Minghui
    Dong, Yanhao
    Han, Jing
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 153
  • [24] Multiagent Reinforcement Learning With Heterogeneous Graph Attention Network
    Du, Wei
    Ding, Shifei
    Zhang, Chenglong
    Shi, Zhongzhi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (10) : 6851 - 6860
  • [25] A Deep Reinforcement Learning Based Framework for Power System Load Frequency Control
    Zhang, Guanyu
    Teng, Mengjie
    Chen, Chen
    Bie, Zhaohong
    2022 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (I&CPS ASIA 2022), 2022, : 1801 - 1805
  • [26] Voltage Control Method of Distribution Network with Soft Open Point Based on Deep Reinforcement Learning
    Zhu Z.
    Zhang X.
    Chen H.
    Gaodianya Jishu/High Voltage Engineering, 2024, 50 (03): : 1214 - 1225
  • [27] Multi-Agent Graph-Attention Deep Reinforcement Learning for Post-Contingency Grid Emergency Voltage Control
    Zhang, Ying
    Yue, Meng
    Wang, Jianhui
    Yoo, Shinjae
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (03) : 3340 - 3350
  • [28] An emergency control strategy for undervoltage load shedding of power system: A graph deep reinforcement learning method
    Pei, Yangzhou
    Yang, Jun
    Wang, Jundong
    Xu, Peidong
    Zhou, Ting
    Wu, Fuzhang
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2023, 17 (09) : 2130 - 2141
  • [29] Deep Reinforcement Learning Based Approach for Active Power Security Correction Control of Power System
    Wang, Yidi
    Li, Lixin
    Yu, Yijun
    Ma, Xiaochen
    Cai, Zhi
    Liu, Meng
    Tang, Junci
    2022 4TH ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM (AEEES 2022), 2022, : 701 - 705
  • [30] Fault Identification in Power Network Based on Deep Reinforcement Learning
    Li, Mengshi
    Zhang, Huanming
    Ji, Tianyao
    Wu, Q. H.
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2022, 8 (03): : 721 - 731