Transformer Neural Network Architecture for Forecasting of Colombian Solar Irradiance

被引:0
|
作者
Orjuela-Canon, Alvaro D. [1 ]
Blanco-Canon, Angie L. [2 ]
Jimenez, Mario F. [3 ]
机构
[1] Univ Rosario, Sch Med & Hlth Sci, Bogota, DC, Colombia
[2] Univ Dist Francisco Jose de Caldas, Engn Fac, Bogota, DC, Colombia
[3] Univ Rosario, Sch Engn Sci & Technol, Bogota, DC, Colombia
来源
2024 IEEE COLOMBIAN CONFERENCE ON APPLICATIONS OF COMPUTATIONAL INTELLIGENCE, COLCAC 2024 | 2024年
关键词
LSTM; Transformer; Neural Networks; Solar Irradiance; Time Series Forecasting;
D O I
10.1109/ColCACI63187.2024.10666577
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Renewable resources for electrical energy generation are each time more demanded. Solar irradiation is widely used on these days to compute the possible energy generation. However, the current climate change makes the measuring of the availability of this supply a challenge. For this, forecasting models can be employed to determine what so convenient could be the projection of the generation. This paper shows an approach based on comparison of two neural networks architecture for forecasting of solar irradiance, which can be a resource for photovoltaic generation. Long short-term memory and transformer models were analyzed for determine what network holds better performance in this specific case. Information from three days and a transformer neural network with eight heads presented the best result for the forecasting.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Solar Irradiance Forecasting Using Deep Recurrent Neural Networks
    Alzahrani, Ahmad
    Shamsi, Pourya
    Ferdowsi, Mehdi
    Dagli, Cihan
    2017 IEEE 6TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA), 2017, : 988 - 994
  • [22] Hybrid deep neural model for hourly solar irradiance forecasting
    Huang, Xiaoqiao
    Li, Qiong
    Tai, Yonghang
    Chen, Zaiqing
    Zhang, Jun
    Shi, Junsheng
    Gao, Bixuan
    Liu, Wuming
    RENEWABLE ENERGY, 2021, 171 : 1041 - 1060
  • [23] Total Solar Irradiance Forecasting with Keras Recurrent Neural Networks
    Muralikrishna, Amita
    Vieira, Luis E. A.
    dos Santos, Rafael D. C.
    Almeida, Adriano P.
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2020, PT V, 2020, 12253 : 255 - 269
  • [24] Weather Phenomena Monitoring: Optimizing Solar Irradiance Forecasting With Temporal Fusion Transformer
    Hu, Xinyang
    IEEE ACCESS, 2024, 12 : 194133 - 194149
  • [25] An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture
    Cantillo-Luna, Sergio
    Moreno-Chuquen, Ricardo
    Lopez-Sotelo, Jesus
    Celeita, David
    ENERGIES, 2023, 16 (19)
  • [26] Application of Quantum Neural Network for Solar Irradiance Forecasting: A Case Study Using the Folsom Dataset, California
    Santos, Victor Oliveira
    Marinho, Felipe Pinto
    Rocha, Paulo Alexandre Costa
    The, Jesse Van Griensven
    Gharabaghi, Bahram
    ENERGIES, 2024, 17 (14)
  • [27] Neural Network Based Irradiance Mapping Model of Solar PV Power Forecasting Using Sky Image
    Wang, Fei
    Ge, Xinxin
    Zhen, Zhao
    Ren, Hui
    Gao, Yajing
    Ma, Dashuai
    Shafie-khah, Miadreza
    Catalao, Joao P. S.
    2018 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING (IAS), 2018,
  • [28] A multilayer perceptron neural network approach for optimizing solar irradiance forecasting in Central Africa with meteorological insights
    Mfetoum, Inoussah Moungnutou
    Ngoh, Simon Koumi
    Molu, Reagan Jean Jacques
    Kenfack, Brice Felix Nde
    Onguene, Raphael
    Naoussi, Serge Raoul Dzonde
    Tamba, Jean Gaston
    Bajaj, Mohit
    Berhanu, Milkias
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [29] A regime-dependent artificial neural network technique for short-range solar irradiance forecasting
    McCandless, T. C.
    Haupt, S. E.
    Young, G. S.
    RENEWABLE ENERGY, 2016, 89 : 351 - 359
  • [30] Neural network for the estimation of UV erythemal irradiance using solar broadband irradiance
    Alados, I.
    Gomera, M. A.
    Foyo-Moreno, I.
    Alados-Arboledas, L.
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2007, 27 (13) : 1791 - 1799