Proof of a conjecture of Das on the coefficients of mock theta functionsProof of a conjecture of Das on mock theta functionsD. Tang

被引:0
|
作者
Dazhao Tang [1 ]
机构
[1] Chongqing Normal University,School of Mathematical Sciences
关键词
Congruences; Mock theta functions; 3-dissections; Generating functions; 11P83; 33D15; 05A15;
D O I
10.1007/s13398-025-01728-x
中图分类号
学科分类号
摘要
Ramanujan recorded seventeen mock theta functions in his last letter to Hardy. Quite recently, Das (J Math Anal Appl 543(2):128913, 2025) proved some congruences modulo small powers of 3 between the coefficients of the second order mock theta functions μ2(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _2(q)$$\end{document} and A2(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_2(q)$$\end{document}, introduced by Ramanujan and McIntosh, respectively. Moreover, Das conjectured a congruence modulo 2187 and three congruences modulo 6561 between the coefficients of μ2(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _2(q)$$\end{document} and A2(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_2(q)$$\end{document}. In this paper, we prove these conjectural congruences by employing some q-series manipulations. Further, we conjecture an infinite family of congruences modulo high powers of 3 between the coefficients of μ2(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _2(q)$$\end{document} and A2(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_2(q)$$\end{document}.
引用
收藏
相关论文
共 30 条
  • [1] The f(q) mock theta function conjecture and partition ranks
    Bringmann, Kathrin
    Ono, Ken
    INVENTIONES MATHEMATICAE, 2006, 165 (02) : 243 - 266
  • [2] The f(q) mock theta function conjecture and partition ranks
    Kathrin Bringmann
    Ken Ono
    Inventiones mathematicae, 2006, 165 : 243 - 266
  • [3] A PROOF OF THE MOCK THETA-CONJECTURES
    HICKERSON, D
    INVENTIONES MATHEMATICAE, 1988, 94 (03) : 639 - 660
  • [4] On recursions for coefficients of mock theta functions
    Chan S.H.
    Mao R.
    Osburn R.
    Research in Number Theory, 1 (1)
  • [5] THE COEFFICIENTS OF THE ω(q) MOCK THETA FUNCTION
    Garthwaite, Sharon Anne
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (06) : 1027 - 1042
  • [6] A proof of the theta operator conjecture
    Romero, Marino
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2022, 185
  • [7] Parity of coefficients of mock theta functions
    Wang, Liuquan
    JOURNAL OF NUMBER THEORY, 2021, 229 : 53 - 99
  • [8] Theta lifts for Lorentzian lattices and coefficients of mock theta functions
    Bruinier, Jan Hendrik
    Schwagenscheidt, Markus
    MATHEMATISCHE ZEITSCHRIFT, 2021, 297 (3-4) : 1633 - 1657
  • [9] Theta lifts for Lorentzian lattices and coefficients of mock theta functions
    Jan Hendrik Bruinier
    Markus Schwagenscheidt
    Mathematische Zeitschrift, 2021, 297 : 1633 - 1657
  • [10] A proof of the fermionic theta coinvariant conjecture
    Iraci, Alessandro
    Rhoades, Brendon
    Romero, Marino
    DISCRETE MATHEMATICS, 2023, 346 (07)