Early Prediction of the Remaining Useful Life of Lithium-Ion Cells Using Ensemble and Non-Ensemble Algorithms

被引:0
|
作者
Josephin, J. S. Femilda
Sonthalia, Ankit [1 ]
Subramanian, Thiyagarajan [2 ]
Aloui, Fethi [3 ]
Bhatt, Dhowmya [4 ]
Varuvel, Edwin Geo [5 ]
机构
[1] SRM Inst Sci & Technol, Fac Engn & Technol, Dept Automobile Engn, Ghaziabad, Uttar Pradesh, India
[2] Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Automobile Engn, Chennai, India
[3] Univ Polytech Hauts De France UPHF, LAMIH UMR CNRS 8201, INSA Hauts De France, Campus Mont Houy,Batiment Gromaire B0459313, Valenciennes, France
[4] SRM Inst Sci & Technol, Fac Engn & Technol, Dept Comp Sci & Engn, Ghaziabad, India
[5] Istinye Univ, Fac Engn & Nat Sci, Dept Mech Engn, Istanbul, Turkiye
关键词
HEALTH ESTIMATION METHOD; INTELLIGENT PROGNOSTICS; ADVANCED STATISTICS; LINEAR-REGRESSION; BATTERY STATE; ONLINE STATE; MODEL; PERFORMANCE; ENTROPY;
D O I
10.1002/est2.70133
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium-ion cells have become an important part of our daily lives. They are used to power mobile phones, laptops and more recently electric vehicles (both two- and four-wheelers). The chemical behavior of the cells is rather complex and non-linear. For reliable and sustainable use of the cells for practical applications, it is imperative to predict the precise pace at which their capacity will degrade. More importantly, the lifetime of the cells must be predicted at an early stage, which would accelerate development and design optimization of the cells. However, most of the existing methods cannot predict the lifetime at an early stage, since there is a weak correlation between the cell capacity and lifetime. In this study for accurate forecasting of the battery lifetime, the patterns of the parameters such as cell current, voltage, temperature, charging time, internal resistance, and capacity were examined during charging and discharging cycle of the cell. Twelve manually crafted features were prepared from these parameters. The dataset for the features was created using the raw data of the first 100 cycles of 124 cells. Six ensemble and non-ensemble machine learning algorithms, namely, multiple linear regression (MLR), decision tree, support vector machine (SVM), gradient boosting machine (GBM), light gradient boosting machine (LGBM), and extreme gradient boosting (XGBoost), were trained with the features for predicting the life-cycle of the cells. The R2 and root mean squared error (RMSE) values of MLR, decision tree, SVM, GBM, LGBM, and XGBoost were found to be 0.72 and 201, 0.83 and 155, 0.85 and 146, 0.92 and 100, 0.9 and 112, and 0.94 and 95, respectively. The prediction accuracy of lithium-ion cell life-time was found to be the best with the XGBoost algorithm. This shows that only first 100 cycles are required foraccurately predicting the number of cycles the lithium-ion cell can work for. Lastly, the results of the study were compared with the available studies in the literature. Three studies were chosen, and the RMSE of the method proposed in this study was found to be higher than the three studies by 43, 17, and 20. Therefore, the proposed method is a suitable option for predicting the lifetime of lithium-ion cells during the early stages of its development.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Probabilistic Prediction of Remaining Useful Life of Lithium-ion Batteries
    Zhang, Renjie
    Li, Jialin
    Chen, Yifei
    Tan, Shiyi
    Jiang, Jiaxu
    Yuan, Xinmei
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1820 - 1824
  • [12] Remaining useful life prediction of lithium-ion batteries using a hybrid model
    Yao, Fang
    He, Wenxuan
    Wu, Youxi
    Ding, Fei
    Meng, Defang
    ENERGY, 2022, 248
  • [13] Early Prediction of Remaining Useful Life for Lithium-Ion Batteries with the State Space Model
    Liang, Yuqi
    Zhao, Shuai
    ENERGIES, 2024, 17 (24)
  • [14] Prediction on the Remaining Useful Life of Rolling Bearings Using Ensemble DLSTM
    Jiang, Miao
    Xiang, Yang
    SHOCK AND VIBRATION, 2023, 2023
  • [15] Accurate Prediction of Remaining Useful Life for Lithium-ion Battery Cells Using Deep Neural Networks
    Wickramaarachchi, Shamaltha M.
    Suraweera, S. A. Dewmini
    Akalanka, D. M. Pasindu
    Logeeshan, V
    Wanigasekara, C.
    2024 IEEE 5TH ANNUAL WORLD AI IOT CONGRESS, AIIOT 2024, 2024, : 0562 - 0568
  • [16] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on a Mixture of Ensemble Empirical Mode Decomposition and GWO-SVR Model
    Yang, Zhanshe
    Wang, Yunhao
    Kong, Chenzai
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [17] Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life
    Hu, Chao
    Youn, Byeng D.
    Wang, Pingfeng
    Yoon, Joung Taek
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2012, 103 : 120 - 135
  • [18] Transformer Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Chen, Daoquan
    Hong, Weicong
    Zhou, Xiuze
    IEEE ACCESS, 2022, 10 : 19621 - 19628
  • [19] Prediction of Remaining Useful Life of Lithium-ion Battery Based on UKF
    Huang, Mengtao
    Zhang, Qibo
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 4502 - 4506
  • [20] Remaining useful life prediction of lithium-ion battery using a novel health indicator
    Wang, Ranran
    Feng, Hailin
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2021, 37 (03) : 1232 - 1243