TAWFN: a deep learning framework for protein function prediction

被引:0
|
作者
Meng, Lu [1 ]
Wang, Xiaoran [1 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, 3-11 Wenhua Rd, Shenyang 110000, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
SEQUENCE; GENERATION;
D O I
10.1093/bioinformatics/btae571
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation Proteins play pivotal roles in biological systems, and precise prediction of their functions is indispensable for practical applications. Despite the surge in protein sequence data facilitated by high-throughput techniques, unraveling the exact functionalities of proteins still demands considerable time and resources. Currently, numerous methods rely on protein sequences for prediction, while methods targeting protein structures are scarce, often employing convolutional neural networks (CNN) or graph convolutional networks (GCNs) individually.Results To address these challenges, our approach starts from protein structures and proposes a method that combines CNN and GCN into a unified framework called the two-model adaptive weight fusion network (TAWFN) for protein function prediction. First, amino acid contact maps and sequences are extracted from the protein structure. Then, the sequence is used to generate one-hot encoded features and deep semantic features. These features, along with the constructed graph, are fed into the adaptive graph convolutional networks (AGCN) module and the multi-layer convolutional neural network (MCNN) module as needed, resulting in preliminary classification outcomes. Finally, the preliminary classification results are inputted into the adaptive weight computation network, where adaptive weights are calculated to fuse the initial predictions from both networks, yielding the final prediction result. To evaluate the effectiveness of our method, experiments were conducted on the PDBset and AFset datasets. For molecular function, biological process, and cellular component tasks, TAWFN achieved area under the precision-recall curve (AUPR) values of 0.718, 0.385, and 0.488 respectively, with corresponding Fmax scores of 0.762, 0.628, and 0.693, and Smin scores of 0.326, 0.483, and 0.454. The experimental results demonstrate that TAWFN exhibits promising performance, outperforming existing methods.Availability and implementation The TAWFN source code can be found at: https://github.com/ss0830/TAWFN.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Data Mining Framework for Protein Function Prediction
    Rahman, Shuzlina Abdul
    Hussein, Zeti Azura Mohamed
    Abu Bakar, Azuraliza
    INTERNATIONAL SYMPOSIUM OF INFORMATION TECHNOLOGY 2008, VOLS 1-4, PROCEEDINGS: COGNITIVE INFORMATICS: BRIDGING NATURAL AND ARTIFICIAL KNOWLEDGE, 2008, : 1009 - +
  • [22] A Deep Learning Approach to Gene Function Prediction
    McGuire, Cole
    Strunk, Bethany
    Hibbs, Matthew
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2024, 300 (03) : S9 - S9
  • [23] Enzyme Function Prediction using Deep Learning
    Memon, Safyan Aman
    Khan, Kinaan Aamir
    Naveed, Hammad
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 533A - 533A
  • [24] Protein function prediction and classification using deep learning models and knowledge graph mining
    Kannan, Natarajan
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2023, 299 (03) : S208 - S208
  • [25] SDN2GO: An Integrated Deep Learning Model for Protein Function Prediction
    Cai, Yideng
    Wang, Jiacheng
    Deng, Lei
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
  • [26] DeAF: A multimodal deep learning framework for disease prediction
    Li, Kangshun
    Chen, Can
    Cao, Wuteng
    Wang, Hui
    Han, Shuai
    Wang, Renjie
    Ye, Zaisheng
    Wu, Zhijie
    Wang, Wenxiang
    Cai, Leng
    Ding, Deyu
    Yuan, Zixu
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 156
  • [27] Deep learning based drought assessment and prediction framework
    Kaur, Amandeep
    Sood, Sandeep K.
    ECOLOGICAL INFORMATICS, 2020, 57
  • [28] MatchMaker: A Deep Learning Framework for Drug Synergy Prediction
    Kuru, Halil Ibrahim
    Tastan, Oznur
    Cicek, A. Ercument
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (04) : 2334 - 2344
  • [29] Review rating prediction framework using deep learning
    Basem H. Ahmed
    Ayman S. Ghabayen
    Journal of Ambient Intelligence and Humanized Computing, 2022, 13 : 3423 - 3432
  • [30] Optimized Deep Learning Framework for Cryptocurrency Price Prediction
    Rudresh Shirwaikar
    Sagar Naik
    Abiya Pardeshi
    Sailee Manjrekar
    Yash Shetye
    Siddhesh Dhargalkar
    Ritvik Madkaikar
    SN Computer Science, 6 (1)