Direct air capture (DAC): molten carbonate direct transformation of airborne CO2 to durable, useful carbon nanotubes and nano-onions

被引:0
|
作者
Licht, Gad [1 ]
Peltier, Ethan [2 ]
Gee, Simon [2 ]
Licht, Stuart [1 ,2 ,3 ]
机构
[1] Direct Air Capture LLC, A4 188 Triple Diamond Blvd, North Venice, FL 34275 USA
[2] Carbon Corp, 1035 26 St NE, Calgary, AB T2A 6K8, Canada
[3] George Washington Univ, Dept Chem, Washington, DC 20052 USA
来源
RSC SUSTAINABILITY | 2025年 / 3卷 / 03期
关键词
ELECTROLYSIS; DIOXIDE;
D O I
10.1039/d4su00679h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study introduces the concept and first demonstration of an effective molten carbonate chemistry for Direct Air Capture (DAC). Molten carbonate electrolysis is a high-temperature decarbonization process within Carbon Capture, Utilization and Storage (CCUS) that transforms chemistry transforming flue gas CO2 into carbon nanotubes and carbon nano-onions. The key challenge for molten carbonate DAC is to split air's 0.04% CO2 without heating the remaining 99.6%. This is accomplished by integrating a diffusive, insulating membrane over an electrolyte with a high affinity for CO2.
引用
收藏
页码:1339 / 1345
页数:7
相关论文
共 50 条
  • [1] CO2 Capture from Air (Direct Air Capture: DAC)
    Journal of the Institute of Electrical Engineers of Japan, 2023, 143 (02): : 94 - 97
  • [2] Carbon Nano-Onions Made Directly from CO2 by Molten Electrolysis for Greenhouse Gas Mitigation
    Liu, Xinye
    Ren, Jiawen
    Licht, Gad
    Wang, Xirui
    Licht, Stuart
    ADVANCED SUSTAINABLE SYSTEMS, 2019, 3 (10):
  • [3] A new relevant membrane application: CO2 direct air capture (DAC)
    Castro-Munoz, Roberto
    Ahmad, Mohd Zamidi
    Malankowska, Magdalena
    Coronas, Joaquin
    CHEMICAL ENGINEERING JOURNAL, 2022, 446
  • [4] Pricing CO2 Direct Air Capture
    Sutherland, Brandon R.
    JOULE, 2019, 3 (07) : 1571 - 1573
  • [5] Development of high capacity moisture-swing DAC sorbent for direct air capture of CO2
    Wang, Xueru
    Chen, Yan
    Xu, Wenqi
    Lindbrathen, Arne
    Cheng, Xinyue
    Chen, Xi
    Zhu, Liangliang
    Deng, Liyuan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 324
  • [6] Direct Air Capture of CO2 by Physisorbent Materials
    Kumar, Amrit
    Madden, David G.
    Lusi, Matteo
    Chen, Kai-Jie
    Daniels, Emma A.
    Curtin, Teresa
    Perry, John J.
    Zaworotko, Michael J.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (48) : 14372 - 14377
  • [7] Review of CO2 direct air capture adsorbents
    Wang T.
    Dong H.
    Hou C.-L.
    Wang X.-R.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2022, 56 (03): : 462 - 475
  • [8] Pyrrolizidines for direct air capture and CO2 conversion
    Hanusch, Jan M.
    Kerschgens, Isabel P.
    Huber, Florian
    Neuburger, Markus
    Gademann, Karl
    CHEMICAL COMMUNICATIONS, 2019, 55 (07) : 949 - 952
  • [9] Direct capture and separation of CO2 from air
    Siew Ping Teong
    Yugen Zhang
    Green Energy & Environment, 2024, 9 (03) : 413 - 416
  • [10] Direct capture and separation of CO2 from air
    Teong, Siew Ping
    Zhang, Yugen
    GREEN ENERGY & ENVIRONMENT, 2024, 9 (03) : 413 - 416