Thermal-mechanical-electrical coupling isogeometric analysis for piezoelectric material structures

被引:1
|
作者
Zhang, Zhong [1 ]
Zhou, Liming [1 ]
Pei, Chunyan [1 ]
机构
[1] Jilin Univ, Sch Mech & Aerosp Engn, Nation Key Lab Automot Chassis Integrat & Bion, Changchun 130025, Jilin, Peoples R China
关键词
Isogeometric analysis; non uniform rational B-spine; piezoelectric materials; thermal-mechanical-electro coupling; thermal environment; FINITE-ELEMENT-METHOD; WAVE-PROPAGATION; DYNAMIC-ANALYSIS; REFINEMENT; BEAMS; NURBS; COEFFICIENTS; VIBRATION; SURFACE; SHELLS;
D O I
10.1080/15376494.2024.2379505
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To solve the multi-physical coupling characteristics of piezoelectric structures, the thermal-mechanical-electrical coupling isogeometric analysis method (TMEC-IGA) is proposed to explore the structures of piezoelectric materials. Based on the basic equations and boundary conditions of piezoelectric materials, NURBS basis function is introduced to construct displacement and electrical potential functions, and the control equation of TMEC-IGA is derived. Numerical examples show that TMEC-IGA is effective in solving the thermal-mechanical-electro coupling problem of piezoelectric structures, and has broad application prospects in the design, development and performance analysis of piezoelectric devices.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Thermal-mechanical-electrical energy conversion system based on Curie effect and soft-contact rotary triboelectric nanogenerator
    Cao, Xiaole
    Wei, Xuelian
    Li, Ruonan
    Wang, ZhongLin
    Wu, Zhiyi
    NANO RESEARCH, 2023, 16 (02) : 2502 - 2510
  • [32] The probabilistic mechanical-material modeling of complex non-homogeneous structures using the coupling of isogeometric boundary element method and reliability approach
    Nardi, Deborah C.
    Leonel, Edson Denner
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2023,
  • [33] Modelling and computational analysis of structures with integrated piezoelectric material
    Brockmann, Tobias H.
    Lammering, Rolf
    Yang, Fan
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2006, 13 (05) : 371 - 378
  • [34] Analysis of mechanical and electrical imperfect contacts in piezoelectric composites
    Lopez-Realpozo, J. C.
    Caballero-Perez, R. O.
    Rodriguez-Ramos, R.
    Guinovart-Diaz, R.
    Bravo-Castillero, J.
    Camacho-Montes, H.
    Espinosa-Almeyda, Y.
    Sabina, F. J.
    Chi-Vinh, P.
    MECHANICS RESEARCH COMMUNICATIONS, 2018, 93 : 96 - 102
  • [35] Piezoelectric Nanoarrays with Mechanical-Electrical Coupling Microenvironment for Innervated Bone Regeneration
    Wu, Min
    Lin, Han
    Ran, Maofei
    Li, Mengqing
    Liu, Chengli
    Piao, Jinhua
    Yu, Peng
    Ning, Chengyun
    Xiao, Cairong
    Qi, Suijian
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (04) : 5866 - 5879
  • [36] Thermal-mechanical-electrical buckling behavior of functionally graded micro-beams based on modified couple stress theory
    Jia, X. L.
    Ke, L. L.
    Zhong, X. L.
    Sun, Y.
    Yang, J.
    Kitipornchai, S.
    COMPOSITE STRUCTURES, 2018, 202 : 625 - 634
  • [37] Thermal-mechanical-electrical energy conversion system based on Curie effect and soft-contact rotary triboelectric nanogenerator
    Xiaole Cao
    Xuelian Wei
    Ruonan Li
    ZhongLin Wang
    Zhiyi Wu
    Nano Research, 2023, 16 (2) : 2502 - 2510
  • [38] Geometrically nonlinear isogeometric analysis of smart piezoelectric FG plates considering thermal effects of piezoelectric stress and dielectric constants
    Liu, Tao
    Li, Chaodong
    Wang, Chao
    Hu, Wenfeng
    Tinh Quoc Bui
    COMPOSITE STRUCTURES, 2021, 266 (266)
  • [39] Free vibration of self-powered nanoribbons subjected to thermal-mechanical-electrical fields based on a nonlocal strain gradient theory
    Li, C.
    Zhu, C.X.
    Zhang, N.
    Sui, S.H.
    Zhao, J.B.
    Applied Mathematical Modelling, 2022, 110 : 583 - 602
  • [40] THERMAL AND MECHANICAL ANALYSIS OF WELDED STRUCTURES
    NICKELL, RE
    HIBBITT, HD
    NUCLEAR ENGINEERING AND DESIGN, 1975, 32 (01) : 110 - 120