Supporting Mitosis Detection AI Training with Inter-Observer Eye-Gaze Consistencies
被引:1
|
作者:
Gu, Hongyan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Elect & Comp Engn, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Elect & Comp Engn, Los Angeles, CA 90095 USA
Gu, Hongyan
[1
]
Yan, Zihan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Informat Programs, Urbana, IL 61801 USAUniv Calif Los Angeles, Elect & Comp Engn, Los Angeles, CA 90095 USA
Yan, Zihan
[2
]
Alvi, Ayesha
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Elect & Comp Engn, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Elect & Comp Engn, Los Angeles, CA 90095 USA
Alvi, Ayesha
[1
]
Day, Brandon
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Elect & Comp Engn, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Elect & Comp Engn, Los Angeles, CA 90095 USA
Day, Brandon
[1
]
Yang, Chunxu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Elect & Comp Engn, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Elect & Comp Engn, Los Angeles, CA 90095 USA
Yang, Chunxu
[1
]
Wu, Zida
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Elect & Comp Engn, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Elect & Comp Engn, Los Angeles, CA 90095 USA
Wu, Zida
[1
]
Magaki, Shino
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, David Geffen Sch Med, Pathol & Lab Med, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Elect & Comp Engn, Los Angeles, CA 90095 USA
Magaki, Shino
[3
]
Hacri, Mohammad
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kansas, Med Ctr, Pathol & Lab Med, Kansas City, KS 66103 USAUniv Calif Los Angeles, Elect & Comp Engn, Los Angeles, CA 90095 USA
Hacri, Mohammad
[4
]
Chen, Xiang 'Anthony'
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Elect & Comp Engn, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Elect & Comp Engn, Los Angeles, CA 90095 USA
Chen, Xiang 'Anthony'
[1
]
机构:
[1] Univ Calif Los Angeles, Elect & Comp Engn, Los Angeles, CA 90095 USA
[2] Univ Illinois, Informat Programs, Urbana, IL 61801 USA
[3] Univ Calif Los Angeles, David Geffen Sch Med, Pathol & Lab Med, Los Angeles, CA 90095 USA
[4] Univ Kansas, Med Ctr, Pathol & Lab Med, Kansas City, KS 66103 USA
The expansion of artificial intelligence (AI) in pathology tasks has intensified the demand for doctors' annotations in AI development. However, collecting high-quality annotations from doctors is costly and time-consuming, creating a bottleneck in AI progress. This study investigates eye-tracking as a cost-effective technology to collect doctors' behavioral data for AI training with a focus on the pathology task of mitosis detection. One major challenge in using eye-gaze data is the low signal-to-noise ratio, which hinders the extraction of meaningful information. We tackled this by levering the properties of inter-observer eye-gaze consistencies and creating eye-gaze labels from consistent eye-fixations shared by a group of observers. Our study involved 14 non-medical participants, from whom we collected eye-gaze data and generated eye-gaze labels based on varying group sizes. We assessed the efficacy of such eye-gaze labels by training Convolutional Neural Networks (CNNs) and comparing their performance to those trained with ground truth annotations and a heuristic-based baseline. Results indicated that CNNs trained with our eye-gaze labels closely followed the performance of ground-truth-based CNNs, and significantly outperformed the baseline. Although primarily focused on mitosis, we envision that insights from this study can be generalized to other medical imaging tasks.
机构:
Univ Western Sydney UWS, Sch Comp Data & Math Sci, Sydney, AustraliaSymbiosis Int Univ, Symbiosis Inst Technol, Pune Campus, Pune 412115, Maharashtra, India
Bajaj, Simi
Kotecha, Ketan
论文数: 0引用数: 0
h-index: 0
机构:
Symbiosis Int Univ, Symbiosis Inst Technol, Pune Campus, Pune 412115, Maharashtra, IndiaSymbiosis Int Univ, Symbiosis Inst Technol, Pune Campus, Pune 412115, Maharashtra, India