Self-organized Criticality in Neuromorphic Nanowire Networks With Tunable and Local Dynamics

被引:0
|
作者
Michieletti, Fabio [1 ]
Pilati, Davide [1 ,2 ]
Milano, Gianluca [2 ]
Ricciardi, Carlo [1 ]
机构
[1] Politecn Torino, Dept Appl Sci & Technol, I-10129 Turin, Italy
[2] Ist Nazl Ric Metrol, Adv Mat Metrol & Life Sci Div, I-10135 Turin, Italy
关键词
emerging dynamics; neuromorphic nanowire networks; nonlinear transformations; reservoir computing; self-organized criticality; self-organizing systems; CORTICAL NETWORKS; SILVER NANOWIRES; AVALANCHES; MEMORY; COMPUTATION; STATES; CHAOS; EDGE; SOFT;
D O I
10.1002/adfm.202423903
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Self-organized criticality (SOC) has attracted large interest as a key property for the optimization of information processing in biological neural systems. Inspired by this synergy, nanoscale self-organizing devices are demonstrated to emulate critical dynamics due to their complex nature, proving to be ideal candidates for the hardware implementation of brain-inspired unconventional computing paradigms. However, controlling the emerging critical dynamics and understanding its relationship with computing capabilities remains a challenge. Here, it is shown that memristive nanowire networks (NWNs) can be programmed in a critical state through appropriate electrical stimulation. Furthermore, multiterminal electrical characterization reveals that network areas can establish spatial interactions endowing local critical dynamics. The impact of such tunable and local dynamics versus the information processing in the network is experimentally analyzed through in materia implementation of nonlinear transformation (NLT) tasks, in the framework of reservoir computing. As for brain where cortical areas are specialized for a certain function, it is demonstrated that the computing performance of nanowire networks rely on the response of reduced subsets of outputs, which may show critical dynamics or not, depending on the specificity of the task. Such brain-like behavior can lead to neuromorphic systems based on self-organizing networks with reduced hardware complexity by exploiting their local and specialized behavior.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] SELF-ORGANIZED CRITICALITY AND PERCOLATION
    HANER, P
    HELVETICA PHYSICA ACTA, 1995, 68 (02): : 113 - 120
  • [42] Self-organized Higgs criticality
    Eroncel, Cem
    Hubisz, Jay
    Rigo, Gabriele
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (03)
  • [43] Memory in self-organized criticality
    Lippiello, E
    de Arcangelis, L
    Godano, C
    EUROPHYSICS LETTERS, 2005, 72 (04): : 678 - 684
  • [44] Optimization by Self-Organized Criticality
    Heiko Hoffmann
    David W. Payton
    Scientific Reports, 8
  • [45] SELF-ORGANIZED CRITICALITY IN FRAGMENTING
    ODDERSHEDE, L
    DIMON, P
    BOHR, J
    PHYSICAL REVIEW LETTERS, 1993, 71 (19) : 3107 - 3110
  • [46] Optimization by Self-Organized Criticality
    Hoffmann, Heiko
    Payton, David W.
    SCIENTIFIC REPORTS, 2018, 8
  • [47] Apparent self-organized criticality
    Tainaka, K
    Itoh, Y
    PHYSICS LETTERS A, 1996, 220 (1-3) : 58 - 62
  • [48] SANDPILES AND SELF-ORGANIZED CRITICALITY
    DHAR, D
    PHYSICA A, 1992, 186 (1-2): : 82 - 87
  • [49] SEISMICITY AND SELF-ORGANIZED CRITICALITY
    BARRIERE, B
    TURCOTTE, DL
    PHYSICAL REVIEW E, 1994, 49 (02) : 1151 - 1160
  • [50] Self-organized criticality in a nutshell
    Nagler, J
    Hauert, C
    Schuster, HG
    PHYSICAL REVIEW E, 1999, 60 (03): : 2706 - 2709