A Scalable System for Visual Analysis of Ocean Data

被引:0
|
作者
Jain, Toshit [1 ]
Singh, Upkar [1 ]
Singh, Varun [1 ]
Boda, Vijay Kumar [1 ]
Hotz, Ingrid [1 ,2 ]
Vadhiyar, Sathish S. [3 ]
Vinayachandran, P. N. [4 ]
Natarajan, Vijay [1 ,5 ]
机构
[1] Indian Inst Sci Bengaluru, Dept Comp Sci & Automat CSA, Bengaluru, India
[2] Linkoping Univ, Dept Sci & Technol ITN, Norrkoping, Sweden
[3] Indian Inst Sci Bengaluru, Dept Computat & Data Sci CDS, Bengaluru, India
[4] Indian Inst Sci Bengaluru, Ctr Atmospher & Ocean Sci CAOS, Bengaluru, India
[5] Zuse Inst Berlin, Visual & Data Centr Comp, Berlin, Germany
关键词
interaction; human-computer interfaces; visualization; scientific visualization; MESOSCALE EDDIES; COORDINATE; EDDY; VISUALIZATION;
D O I
10.1111/cgf.15279
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Oceanographers rely on visual analysis to interpret model simulations, identify events and phenomena, and track dynamic ocean processes. The ever increasing resolution and complexity of ocean data due to its dynamic nature and multivariate relationships demands a scalable and adaptable visualization tool for interactive exploration. We introduce pyParaOcean, a scalable and interactive visualization system designed specifically for ocean data analysis. pyParaOcean offers specialized modules for common oceanographic analysis tasks, including eddy identification and salinity movement tracking. These modules seamlessly integrate with ParaView as filters, ensuring a user-friendly and easy-to-use system while leveraging the parallelization capabilities of ParaView and a plethora of inbuilt general-purpose visualization functionalities. The creation of an auxiliary dataset stored as a Cinema database helps address I/O and network bandwidth bottlenecks while supporting the generation of quick overview visualizations. We present a case study on the Bay of Bengal to demonstrate the utility of the system and scaling studies to evaluate the efficiency of the system.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] SMART CAMPUS ELECTRICITY DATA VISUAL ANALYSIS SYSTEM
    Guo, Shasha
    Jing, Changfeng
    Zhang, Hongyang
    Lv, Xinxin
    Li, Wan
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION IV, 2022, 43-B4 : 447 - 453
  • [22] Aneulysis-A system for the visual analysis of aneurysm data
    Meuschke, Monique
    Preim, Bernhard
    Lawonn, Kai
    COMPUTERS & GRAPHICS-UK, 2021, 98 : 197 - 209
  • [23] GenealogyVis: A System for Visual Analysis of Multidimensional Genealogical Data
    Liu, Yuhua
    Dai, Sicheng
    Wang, Changbo
    Zhou, Zhiguang
    Qu, Huamin
    IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2017, 47 (06) : 873 - 885
  • [24] OFViser: An Interactive Visual System for Spatio-temporal Analysis of Ocean Front
    Song, Jian
    Xie, Cui
    Dong, Junyu
    2020 11TH INTERNATIONAL CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY (ICAST), 2020,
  • [25] Ocean of Things Affordable Maritime Sensors with Scalable Analysis
    Waterston, John
    Rhea, Jason
    Peterson, Scott
    Bolick, Leslie
    Ayers, Jennifer
    Ellen, Jeffrey
    OCEANS 2019 - MARSEILLE, 2019,
  • [26] A Scalable Data Handling System for ATST
    Wampler, Steve
    Goodrich, Bret
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XVIII, 2009, 411 : 527 - 530
  • [27] A scalable Cloud-based system for data-intensive spatial analysis
    Sinnott, R. O.
    Voorsluys, W.
    INTERNATIONAL JOURNAL ON SOFTWARE TOOLS FOR TECHNOLOGY TRANSFER, 2016, 18 (06) : 587 - 605
  • [28] A scalable Cloud-based system for data-intensive spatial analysis
    R. O. Sinnott
    W. Voorsluys
    International Journal on Software Tools for Technology Transfer, 2016, 18 : 587 - 605
  • [29] Scalable Visual Codes for Embedding Digital Data in the Physical World
    Hermans, Frederik
    McNamara, Liam
    Voigt, Thiemo
    SenSys'15: Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems, 2015, : 457 - 458
  • [30] Scalable visual assessment of cluster tendency for large data sets
    Hathaway, Richard J.
    Bezdek, James C.
    Huband, Jacalyn M.
    PATTERN RECOGNITION, 2006, 39 (07) : 1315 - 1324