A Scalable System for Visual Analysis of Ocean Data

被引:0
|
作者
Jain, Toshit [1 ]
Singh, Upkar [1 ]
Singh, Varun [1 ]
Boda, Vijay Kumar [1 ]
Hotz, Ingrid [1 ,2 ]
Vadhiyar, Sathish S. [3 ]
Vinayachandran, P. N. [4 ]
Natarajan, Vijay [1 ,5 ]
机构
[1] Indian Inst Sci Bengaluru, Dept Comp Sci & Automat CSA, Bengaluru, India
[2] Linkoping Univ, Dept Sci & Technol ITN, Norrkoping, Sweden
[3] Indian Inst Sci Bengaluru, Dept Computat & Data Sci CDS, Bengaluru, India
[4] Indian Inst Sci Bengaluru, Ctr Atmospher & Ocean Sci CAOS, Bengaluru, India
[5] Zuse Inst Berlin, Visual & Data Centr Comp, Berlin, Germany
关键词
interaction; human-computer interfaces; visualization; scientific visualization; MESOSCALE EDDIES; COORDINATE; EDDY; VISUALIZATION;
D O I
10.1111/cgf.15279
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Oceanographers rely on visual analysis to interpret model simulations, identify events and phenomena, and track dynamic ocean processes. The ever increasing resolution and complexity of ocean data due to its dynamic nature and multivariate relationships demands a scalable and adaptable visualization tool for interactive exploration. We introduce pyParaOcean, a scalable and interactive visualization system designed specifically for ocean data analysis. pyParaOcean offers specialized modules for common oceanographic analysis tasks, including eddy identification and salinity movement tracking. These modules seamlessly integrate with ParaView as filters, ensuring a user-friendly and easy-to-use system while leveraging the parallelization capabilities of ParaView and a plethora of inbuilt general-purpose visualization functionalities. The creation of an auxiliary dataset stored as a Cinema database helps address I/O and network bandwidth bottlenecks while supporting the generation of quick overview visualizations. We present a case study on the Bay of Bengal to demonstrate the utility of the system and scaling studies to evaluate the efficiency of the system.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A survey on visual analysis of ocean data
    Xie, Cui
    Li, Mingkui
    Wang, Haoying
    Dong, Junyu
    VISUAL INFORMATICS, 2019, 3 (03): : 113 - 128
  • [2] SOVAS: a scalable online visual analytic system for big climate data analysis
    Li, Zhenlong
    Huang, Qunying
    Jiang, Yuqin
    Hu, Fei
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2020, 34 (06) : 1188 - 1209
  • [3] PEViz: an in situ progressive visual analytics system for ocean ensemble data
    Zhang, Yihan
    Li, Guan
    Yue, Runpu
    Liu, Jun
    Shan, Guihua
    JOURNAL OF VISUALIZATION, 2023, 26 (02) : 423 - 440
  • [4] PEViz: an in situ progressive visual analytics system for ocean ensemble data
    Yihan Zhang
    Guan Li
    Runpu Yue
    Jun Liu
    Guihua Shan
    Journal of Visualization, 2023, 26 : 423 - 440
  • [5] Scalable pixel based visual data exploration
    Keim, Daniel A.
    Schneidewind, Joern
    Sips, Mike
    PIXELIZATION PARADIGM, 2007, 4370 : 12 - +
  • [6] Scalable Analysis of Massive Graphs on A Parallel Data Flow System
    Yoo, Andy
    43RD HAWAII INTERNATIONAL CONFERENCE ON SYSTEMS SCIENCES VOLS 1-5 (HICSS 2010), 2010, : 1492 - 1497
  • [7] Scalable Predictive Analysis in Critically Ill Patients Using a Visual Open Data Analysis Platform
    Van Poucke, Sven
    Zhang, Zhongheng
    Schmitz, Martin
    Vukicevic, Milan
    Vander Laenen, Margot
    Celi, Leo Anthony
    De Deyne, Cathy
    PLOS ONE, 2016, 11 (01):
  • [8] A System for Visual Analysis of Radio Signal Data
    Crnovrsanin, Tarik
    Muelder, Chris
    Ma, Kwan-Liu
    2014 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2014, : 33 - 42
  • [9] Visual Analysis System for Search Trend Data
    Cheng D.
    Wang Y.
    Wang, Yunhai (wang.yh@sdu.edu.cn), 1600, Institute of Computing Technology (33): : 508 - 517
  • [10] Aneulysis – A system for the visual analysis of aneurysm data
    Meuschke, Monique
    Preim, Bernhard
    Lawonn, Kai
    Meuschke, Monique (meuschke@isg.cs.uni-magdeburg.de), 1600, Elsevier Ltd (98): : 197 - 209