Influence of external electric field regulating hydrogen adsorption on graphene quantum dots, graphene quantum dots with defects, and metal-ion-doped graphene quantum dots

被引:0
|
作者
Kuamit, Thanawit [1 ]
Mulya, Fadjar [1 ,2 ]
Kongkaew, Sirilak [1 ]
Parasuk, Vudhichai [1 ]
机构
[1] Chulalongkorn Univ, Ctr Excellence Computat Chem, Fac Sci, Dept Chem, Phyathai Rd, Bangkok 10330, Thailand
[2] Airlangga Univ, Fac Adv Technol & Multidiscipline, Nanotechnol Engn, Surabaya 60115, Indonesia
关键词
Hydrogen adsorption; Graphene quantum dots; Charge transfer; Electric filed; DFT; LI DISPERSED GRAPHENE; NONCOVALENT INTERACTIONS; DENSITY FUNCTIONALS; DECORATED GRAPHENE; STORAGE CAPACITY; TI; MONOLAYER; SHEETS; ATOMS; AL;
D O I
10.1016/j.comptc.2024.115050
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen storage is crucial for efficient hydrogen energy utilization, but current materials often require extreme conditions, such as low temperatures (<20.15 K) or high pressures (350-700 atm), and an ideal adsorption energy between -0.2 and -0.6 eV. This study employs density functional theory (DFT) to explore hydrogen adsorption on graphene quantum dots (GQDs), including pristine GQDs, nitrogen-substituted divacancy defect GQDs (4N-GQDs), and metal-ion-doped 4N-GQDs (M-4N-GQDs, M = Ti2+, Fe2+, Cu2+, Zn2+). Pristine and 4N-GQDs show comparable adsorption energies (-0.02 eV), while M-4N-GQDs exhibit stronger adsorption, ranging from -0.221 to -0.025 eV. Ti2+-4N-GQD achieves an optimal adsorption energy of -0.221 eV, making it highly suitable for hydrogen storage. The metal center's charge transfer upon hydrogen adsorption influences binding strength. An external electric field (EEF) further reduces adsorption energy, promoting H-2 desorption. These results highlight Ti2+-4N-GQD's potential for regulating H-2 adsorption and desorption in hydrogen storage applications.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Graphene Quantum Dots for Theranostics and Bioimaging
    Schroeder, Kathryn L.
    Goreham, Renee V.
    Nann, Thomas
    PHARMACEUTICAL RESEARCH, 2016, 33 (10) : 2337 - 2357
  • [42] Spin qubits in graphene quantum dots
    Trauzettel, Bjoern
    Bulaev, Denis V.
    Loss, Daniel
    Burkard, Guido
    NATURE PHYSICS, 2007, 3 (03) : 192 - 196
  • [43] Charge detection in graphene quantum dots
    Guettinger, J.
    Stampfer, C.
    Hellmueller, S.
    Molitor, F.
    Ihn, T.
    Ensslin, K.
    APPLIED PHYSICS LETTERS, 2008, 93 (21)
  • [44] Transport through graphene quantum dots
    Guettinger, J.
    Molitor, F.
    Stampfer, C.
    Schnez, S.
    Jacobsen, A.
    Droescher, S.
    Ihn, T.
    Ensslin, K.
    REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (12)
  • [46] Functional microspheres of graphene quantum dots
    Ding, Yi
    Cheng, Huhu
    Zhou, Ce
    Fan, Yueqiong
    Zhu, Jia
    Shao, Huibo
    Qu, Liangti
    NANOTECHNOLOGY, 2012, 23 (25)
  • [47] SUBSTRATE MODULATED GRAPHENE QUANTUM DOTS
    Ma, Qiong
    Tu, Tao
    Wang, Li
    Li, Hai-Ou
    Lin, Zhi-Rong
    Xiao, Ming
    Guo, Guo-Ping
    MODERN PHYSICS LETTERS B, 2012, 26 (25):
  • [48] Spin States in Graphene Quantum Dots
    Guettinger, J.
    Frey, T.
    Stampfer, C.
    Ihn, T.
    Ensslin, K.
    PHYSICAL REVIEW LETTERS, 2010, 105 (11)
  • [49] GRAPHENE QUANTUM DOTS: THEORY AND EXPERIMENT
    Budyka, Mikhail F.
    Sheka, Elena F.
    Popova, Nadezhda A.
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2017, 51 (01) : 35 - 49
  • [50] COULOMB BLOCKADE IN GRAPHENE QUANTUM DOTS
    Ma, Qiong
    Tu, Tao
    Wang, Li
    Zhou, Chen
    Lin, Zhi-Rong
    Xiao, Ming
    Guo, Guo-Ping
    MODERN PHYSICS LETTERS B, 2013, 27 (01):