Production of hydrogen-rich syngas by steam reforming from toluene over βNiFe/CaO-δZSM-5 catalysts

被引:0
|
作者
Wang, Zhenhui [1 ]
Yang, Bo [1 ]
Lei, Yujie [1 ]
Wang, Liuying [1 ]
Huang, Qiong [1 ]
Chen, Mindong [1 ]
机构
[1] Nanjing Univ Informat Sci Technol, Sch Environm Sci & Engn, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Jiangsu Key Lab Atmospher Environm Monitoring & Po, 219 Ningliu Rd, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
Toluene; VOCs; Ni-based catalysts; Steam reforming for hydrogen production; Toluene for hydrogen production; CARBON-DIOXIDE; NI; METHANE; FE; DECOMPOSITION; TEMPERATURE; PERFORMANCE; COMPOUND; KINETICS; XPS;
D O I
10.1016/j.ijhydene.2025.03.227
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Toluene reforming for hydrogen production can convert toluene in waste gas into clean energy. A novel 3NiFe/ CaO-3ZSM-5 catalyst was prepared through Fe doping and carrier modification to improve the H2 yield, carbon deposition resistance, and stability of toluene for hydrogen production. When the Ni:Fe molar ratio was 3:1 and the mass ratio of CaO to ZSM-5 was 1:3, the H2 yield from the 3NiFe/CaO-3ZSM-5 catalyst reached 97.5 % at 800 degrees C. Moreover, after 10 consecutive cycles, the toluene conversion rate at 800 degrees C was still as high as 100 %, and the H2 yield still reached 68.6 %. The promotion mechanism of Fe doping and carrier modification on the 3NiFe/CaO-3ZSM-5 catalyst was further analyzed. The results showed that Fe doping resulted in the formation of NiFeOx. The presence of NiFeOx effectively reduced the agglomeration and sintering of the Ni metal particles, increasing their dispersion and thereby improving the H2 yield of the catalyst. The addition of CaO to the carrier caused an even dispersion of the active components on the carrier surface and formed Ca2Fe2O5. Ca2Fe2O5 has multiple oxygen vacancies, which facilitate the migration of O2- and the diffusion of CO2. Moreover, the doping of CaO in the carrier increased the number of alkaline sites in the catalyst, which promoted the ability of the catalyst to capture CO2 and generate CaCO3. CaCO3 effectively reduced the generation of graphite carbon and amorphous carbon on the catalyst surface and weakened the adhesion of the generated carbon deposits on the catalyst. In addition, CaCO3 promoted the CO water gas and CH4 steam reforming reactions in the processing of toluene to produce hydrogen, thereby increasing the H2 yield.
引用
收藏
页码:218 / 230
页数:13
相关论文
共 50 条
  • [31] Single-step production of hydrogen-rich syngas from toluene using multifunctional Ni-dolomite catalysts
    Xu, Tingting
    Wang, Xun
    Xiao, Bo
    Liu, Wen
    CHEMICAL ENGINEERING JOURNAL, 2021, 425
  • [32] Hydrogen-Rich Syngas Production by Toluene Reforming in a Microchannel Reactor Coated with Ni/MgO-Al2O3 Multifunctional Catalysts
    Jiao, Yi
    Zhang, Jun
    Du, Yongmei
    Yao, Peng
    Wang, Jianli
    Lu, Jian
    Chen, Yaoqiang
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (43) : 19794 - 19802
  • [33] Biomass to hydrogen-rich syngas via catalytic steam reforming of bio-oil
    Chen, Guanyi
    Yao, Jingang
    Liu, Jing
    Yan, Beibei
    Shan, Rui
    RENEWABLE ENERGY, 2016, 91 : 315 - 322
  • [34] Production of Hydrogen-Rich Syngas from Dimethyl Ether by Using a Microwave Steam Plasma
    Uhm, Han S.
    Choi, Chang H.
    Lee, Joo Y.
    Kim, Dong J.
    Woo, Sang G.
    Woo, Minwoo
    Lee, Dong C.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2019, 75 (06) : 460 - 465
  • [35] Production of Hydrogen-Rich Syngas from Dimethyl Ether by Using a Microwave Steam Plasma
    Han S. Uhm
    Chang H. Choi
    Joo Y. Lee
    Dong J. Kim
    Sang G. Woo
    Minwoo Woo
    Dong C. Lee
    Journal of the Korean Physical Society, 2019, 75 : 460 - 465
  • [36] Hydrogen-rich syngas production via steam reforming of palm oil mill effluent (POME) - A thermodynamics analysis
    Cheng, Yoke Wang
    Lee, Zhan Sheng
    Chong, Chi Cheng
    Khan, Maksudur R.
    Cheng, Chin Kui
    Ng, Kim Hoong
    Hossain, Sk Safdar
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (37) : 20711 - 20724
  • [37] Hydrogen production by catalytic steam reforming of waste cooking oil over La-Ni/ZSM-5 catalyst
    Na Xiao
    Rui Zhao
    Yufei Liu
    Wei Zhan
    Yonghui Xu
    Zhengshun Wu
    Korean Journal of Chemical Engineering, 2023, 40 : 2174 - 2186
  • [38] Hydrogen production by catalytic steam reforming of waste cooking oil over La-Ni/ZSM-5 catalyst
    Xiao, Na
    Zhao, Rui
    Liu, Yufei
    Zhan, Wei
    Xu, Yonghui
    Wu, Zhengshun
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2023, 40 (09) : 2174 - 2186
  • [39] Hydrogen production by steam reforming of bio-oil aqueous fraction over Co-Fe/ZSM-5
    Chen, Mingqiang
    Wang, Yishuang
    Liang, Tian
    Yang, Zhonglian
    3RD INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY RESOURCES AND ENVIRONMENT ENGINEERING, 2018, 113
  • [40] Reforming of Biomass Fuel Gas to Hydrogen-Rich Syngas Over Ni-Co-Rh/Cordierite Catalysts
    Yang, Yantao
    Lei, Tingzhou
    Zhang, Quanguo
    Hu, Jianjun
    Wang, Zhiwei
    Xu, Haiyan
    Wu, Yifeng
    JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2018, 12 (04) : 362 - 368