Synthesis of voiced sounds using physics-informed neural networks

被引:0
|
作者
Yokota, Kazuya [1 ]
Ogura, Masataka [2 ]
Abe, Masajiro [3 ]
机构
[1] Nagaoka Univ Technol, Dept Mech Engn, 1603-1 Kamitomioka, Nagaoka 9402188, Japan
[2] Nagaoka Univ Technol, Ctr Integrated Technol Support, 1603-1 Kamitomioka, Nagaoka 9402188, Japan
[3] Nagaoka Univ Technol, Dept Syst Safety Engn, 1603-1 Kamitomioka, Nagaoka 9402188, Japan
关键词
Physics-informed neural networks; PINNs; Vocal tract; Voiced sounds; Glottal inverse filtering; MODEL;
D O I
10.1250/ast.e24.55
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Recently, physics-informed neural networks (PINNs) have garnered attention for use as a numerical simulation method for inverse analysis, such as property identification. However, studies on PINNs for conducting acoustic analysis are scarce. Thus, this study developed PINNs that performed acoustic analysis of the vocal tract and synthesized voiced sounds. In addition, PINNs were used to identify glottal source waveforms. Consequently, PINNs were demonstrated to be a promising solution for the inverse problem related to speech production.
引用
收藏
页码:333 / 336
页数:4
相关论文
共 50 条
  • [31] GaborPINN: Efficient Physics-Informed Neural Networks Using Multiplicative Filtered Networks
    Huang X.
    Alkhalifah T.
    IEEE Geoscience and Remote Sensing Letters, 2023, 20
  • [32] Referenceless characterization of complex media using physics-informed neural networks
    Goel, Suraj
    Conti, Claudio
    Leedumrongwatthanakun, Saroch
    Malik, Mehul
    OPTICS EXPRESS, 2023, 31 (20) : 32824 - 32839
  • [33] Quantification of gradient energy coefficients using physics-informed neural networks
    Shang, Lan
    Zhao, Yunhong
    Zheng, Sizheng
    Wang, Jin
    Zhang, Tongyi
    Wang, Jie
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 273
  • [34] Numerical Simulation of Streamer Discharge Using Physics-Informed Neural Networks
    Peng, Changzhi
    Sabariego, Ruth V.
    Dong, Xuzhu
    Ruan, Jiangjun
    IEEE TRANSACTIONS ON MAGNETICS, 2024, 60 (03) : 1 - 4
  • [35] Combined analysis of thermofluids and electromagnetism using physics-informed neural networks
    Jeong, Yeonhwi
    Jo, Junhyoung
    Lee, Tonghun
    Yoo, Jihyung
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [36] FIELD PREDICTIONS OF HYPERSONIC CONES USING PHYSICS-INFORMED NEURAL NETWORKS
    Villanueva, Daniel
    Paez, Brandon
    Rodriguez, Arturo
    Chattopadhyay, Ashesh
    Kotteda, V. M. Krushnarao
    Baez, Rafael
    Perez, Jose
    Terrazas, Jose
    Kumar, Vinod
    PROCEEDINGS OF ASME 2022 FLUIDS ENGINEERING DIVISION SUMMER MEETING, FEDSM2022, VOL 2, 2022,
  • [37] Quasinormal modes in modified gravity using physics-informed neural networks
    Luna, Raimon
    Doneva, Daniela D.
    Font, Jose A.
    Lien, Jr-Hua
    Yazadjiev, Stoytcho S.
    PHYSICAL REVIEW D, 2024, 109 (12)
  • [38] Multiphysics generalization in a polymerization reactor using physics-informed neural networks
    Ryu, Yubin
    Shin, Sunkyu
    Lee, Won Bo
    Na, Jonggeol
    CHEMICAL ENGINEERING SCIENCE, 2024, 298
  • [39] Damage identification for plate structures using physics-informed neural networks
    Zhou, Wei
    Xu, Y. F.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 209
  • [40] Solving groundwater flow equation using physics-informed neural networks
    Cuomo, Salvatore
    De Rosa, Mariapia
    Giampaolo, Fabio
    Izzo, Stefano
    Di Cola, Vincenzo Schiano
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 145 : 106 - 123