MHCLSyn: Multi-View Hypergraph Contrastive Learning for Synergistic Drug Combination Prediction

被引:0
|
作者
Li, Lei [1 ]
Lu, Guodong [2 ]
Zheng, Chunhou [1 ]
Lin, Renyong [2 ]
Su, Yansen [1 ]
机构
[1] Anhui Univ, Sch Artificial Intelligence, Hefei 230601, Peoples R China
[2] Xinjiang Med Univ, Affiliated Hosp 1, Clin Med Res Inst, State Key Lab Pathogenesis Prevent & Treatment Cen, Urumqi 830054, Peoples R China
来源
BIG DATA MINING AND ANALYTICS | 2024年 / 7卷 / 04期
基金
中国国家自然科学基金;
关键词
Drugs; Representation learning; Computational modeling; Search methods; Perturbation methods; Contrastive learning; Predictive models; Benchmark testing; Market research; Cancer; synergistic drug combinations; cell lines; multi-way relations; multi-view hypergraph contrastive learning; CANCER; RESISTANCE; DISCOVERY; DELIVERY;
D O I
10.26599/BDMA.2024.9020054
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the field of cancer treatment, drug combination therapy appears to be a promising treatment strategy compared to monotherapy. Recently, plenty of computational models are gradually applied to prioritize synergistic drug combinations. However, the existing prediction models have not fully exploited the multi-way relations between drug combinations and cell lines. Besides, the number of identified drug-drug-cell line triplets is insufficient owning to the high cost of in vitro screening, which affects the ability of models to capture and utilize multi-way relations. To address this challenge, we design the multi-view hypergraph contrastive learning model, termed MHCLSyn, for synergistic drug combination prediction. First, the synergistic drug-drug-cell line triplets are formulated as a drug synergy hypergraph, and three task-specific hypergraphs are designed based on the drug synergy hypergraph. Then, we design a multi-view hypergraph contrastive learning with enhancement schemes, which allows for more expressive and discriminative node representation learning on drug synergy hypergraph. After that, the representations of nodes indicating drug-drug-cell line triplets are inputted to fully connected network for making predictions. Extensive experiments show MHCLSyn achieves better performance than state-of-the-art prediction models on benchmark datasets and is applicable to unseen drug combinations or cell lines. Case study indicates that MHCLSyn is capable of detecting potential synergistic drug combinations.
引用
收藏
页码:1273 / 1286
页数:14
相关论文
共 50 条
  • [21] Multi-View Action Recognition using Contrastive Learning
    Shah, Ketul
    Shah, Anshul
    Lau, Chun Pong
    de Melo, Celso M.
    Chellappa, Rama
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 3370 - 3380
  • [22] MUSE: Multi-View Contrastive Learning for Heterophilic Graphs
    Yuan, Mengyi
    Chen, Minjie
    Li, Xiang
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 3094 - 3103
  • [23] Multi-view Mixed Attention for Contrastive Learning on Hypergraphs
    Lee, Jongsoo
    Chae, Dong-Kyu
    PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 2543 - 2547
  • [24] Selective Contrastive Learning for Unpaired Multi-View Clustering
    Xin, Like
    Yang, Wanqi
    Wang, Lei
    Yang, Ming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 1749 - 1763
  • [25] Contrastive and attentive graph learning for multi-view clustering
    Wang, Ru
    Li, Lin
    Tao, Xiaohui
    Wang, Peipei
    Liu, Peiyu
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (04)
  • [26] A multi-view contrastive learning for heterogeneous network embedding
    Qi Li
    Wenping Chen
    Zhaoxi Fang
    Changtian Ying
    Chen Wang
    Scientific Reports, 13
  • [27] Contrastive learning, multi-view redundancy, and linear models
    Tosh, Christopher
    Krishnamurthy, Akshay
    Hsu, Daniel
    ALGORITHMIC LEARNING THEORY, VOL 132, 2021, 132
  • [28] Multi-view Document Clustering with Joint Contrastive Learning
    Bai, Ruina
    Huang, Ruizhang
    Qin, Yongbin
    Chen, Yanping
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2022, PT I, 2022, 13551 : 706 - 719
  • [29] A multi-view contrastive learning for heterogeneous network embedding
    Li, Qi
    Chen, Wenping
    Fang, Zhaoxi
    Ying, Changtian
    Wang, Chen
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [30] Multi-view contrastive learning for multilayer network embedding
    Zhang, MingJie
    Wang, Dingwen
    Wu, Hongrun
    Li, Yuanxiang
    Xiang, Zhenglong
    JOURNAL OF COMPUTATIONAL SCIENCE, 2023, 67