MHCLSyn: Multi-View Hypergraph Contrastive Learning for Synergistic Drug Combination Prediction

被引:0
|
作者
Li, Lei [1 ]
Lu, Guodong [2 ]
Zheng, Chunhou [1 ]
Lin, Renyong [2 ]
Su, Yansen [1 ]
机构
[1] Anhui Univ, Sch Artificial Intelligence, Hefei 230601, Peoples R China
[2] Xinjiang Med Univ, Affiliated Hosp 1, Clin Med Res Inst, State Key Lab Pathogenesis Prevent & Treatment Cen, Urumqi 830054, Peoples R China
来源
BIG DATA MINING AND ANALYTICS | 2024年 / 7卷 / 04期
基金
中国国家自然科学基金;
关键词
Drugs; Representation learning; Computational modeling; Search methods; Perturbation methods; Contrastive learning; Predictive models; Benchmark testing; Market research; Cancer; synergistic drug combinations; cell lines; multi-way relations; multi-view hypergraph contrastive learning; CANCER; RESISTANCE; DISCOVERY; DELIVERY;
D O I
10.26599/BDMA.2024.9020054
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the field of cancer treatment, drug combination therapy appears to be a promising treatment strategy compared to monotherapy. Recently, plenty of computational models are gradually applied to prioritize synergistic drug combinations. However, the existing prediction models have not fully exploited the multi-way relations between drug combinations and cell lines. Besides, the number of identified drug-drug-cell line triplets is insufficient owning to the high cost of in vitro screening, which affects the ability of models to capture and utilize multi-way relations. To address this challenge, we design the multi-view hypergraph contrastive learning model, termed MHCLSyn, for synergistic drug combination prediction. First, the synergistic drug-drug-cell line triplets are formulated as a drug synergy hypergraph, and three task-specific hypergraphs are designed based on the drug synergy hypergraph. Then, we design a multi-view hypergraph contrastive learning with enhancement schemes, which allows for more expressive and discriminative node representation learning on drug synergy hypergraph. After that, the representations of nodes indicating drug-drug-cell line triplets are inputted to fully connected network for making predictions. Extensive experiments show MHCLSyn achieves better performance than state-of-the-art prediction models on benchmark datasets and is applicable to unseen drug combinations or cell lines. Case study indicates that MHCLSyn is capable of detecting potential synergistic drug combinations.
引用
收藏
页码:1273 / 1286
页数:14
相关论文
共 50 条
  • [1] Multi-view Contrastive Learning Hypergraph Neural Network for Drug-Microbe-Disease Association Prediction
    Liu, Luotao
    Huang, Feng
    Liu, Xuan
    Xiong, Zhankun
    Li, Menglu
    Song, Congzhi
    Zhang, Wen
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 4829 - 4837
  • [2] Multi-view Hypergraph Contrastive Policy Learning for Conversational Recommendation
    Zhao, Sen
    Wei, Wei
    Mao, Xian-Ling
    Zhu, Shuai
    Yang, Minghui
    Wen, Zujie
    Chen, Dangyang
    Zhu, Feida
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 654 - 664
  • [3] Multi-view Graph Contrastive Representation Learning for Drug-Drug Interaction Prediction
    Wang, Yingheng
    Min, Yaosen
    Chen, Xin
    Wu, Ji
    PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 2921 - 2933
  • [4] Dual Contrastive Prediction for Incomplete Multi-View Representation Learning
    Lin, Yijie
    Gou, Yuanbiao
    Liu, Xiaotian
    Bai, Jinfeng
    Lv, Jiancheng
    Peng, Xi
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 4447 - 4461
  • [5] Contrastive Multi-View Kernel Learning
    Liu, Jiyuan
    Liu, Xinwang
    Yang, Yuexiang
    Liao, Qing
    Xia, Yuanqing
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (08) : 9552 - 9566
  • [6] Multi-view dreaming: multi-view world model with contrastive learning
    Kinose A.
    Okumura R.
    Okada M.
    Taniguchi T.
    Advanced Robotics, 2023, 37 (19) : 1212 - 1220
  • [7] Synergistic Multi-Drug Combination Prediction Based on Heterogeneous Network Representation Learning with Contrastive Learning
    Xi, Xin
    Yuan, Jinhui
    Lu, Shan
    He, Jieyue
    TSINGHUA SCIENCE AND TECHNOLOGY, 2025, 30 (01): : 215 - 233
  • [8] Dual contrastive learning for multi-view clustering
    Bao, Yichen
    Zhao, Wenhui
    Zhao, Qin
    Gao, Quanxue
    Yang, Ming
    NEUROCOMPUTING, 2024, 599
  • [9] Multi-view Contrastive Learning Network for Recommendation
    Bu, Xiya
    Ma, Ruixin
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IX, 2024, 14433 : 319 - 330
  • [10] Heterogeneous Graph Contrastive Multi-view Learning
    Wang, Zehong
    Li, Qi
    Yu, Donghua
    Han, Xiaolong
    Gao, Xiao-Zhi
    Shen, Shigen
    PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 136 - 144