Constructing metal-π sites in MOF to enhance CO2/CH4 separation performance within mixed matrix membranes☆

被引:0
|
作者
Zhang, Yong [1 ]
Liang, Chao [1 ]
Chen, Jianian [1 ]
Li, Zhaomin [1 ]
Li, Xueqin [1 ]
机构
[1] Shihezi Univ, Sch Chem & Chem Engn, State Key Lab Incubat Base Green Proc Chem Engn, Shihezi 832003, Xinjiang, Peoples R China
关键词
Mixed matrix membrane; Metal-organic framework; Metal-pi interaction; pi* orbital; CO2; separation; INITIO MOLECULAR-DYNAMICS; ORGANIC FRAMEWORK; DESIGN; TRANSITION; ADSORPTION;
D O I
10.1016/j.cej.2025.161233
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mixed matrix membranes (MMMs) are used to separate CO2 from biogas, with the objective of striking a satisfactory balance between permeability and selectivity. The precise design of metal-pi sites for MOFs in MMMs helps to address this challenge by utilizing the distinct molecular orbital differences between CO2 and CH4. In this work, a range of MOF-808 (Mx-MOF-808) fillers with unsaturated Zr sites were synthesized using a method involving competitive coordination substitution, and they mixed with Pebax to fabricate MMMs for CO2/CH4 separation. The Pebax/Mx-MOF-808 MMMs exhibited an excellent CO2 recognition function, which is attributed to the metal-pi interactions between the Zr sites within the MOF and CO2 molecules. This selective CO2 recognition is achieved by pi backdonation and pi complexation forces, which enable the Zr sites to interact selectively with CO2. In contrast, CH4 molecules are difficult to recognize due to their lack of unsaturated pi orbitals, which disfavors selective interactions with the Zr sites. Compared to pure Pebax membrane, the CO2 permeability of Pebax/M30-MOF-808-4 MMM increased to 987 Barrer (approximate to 140 %), and the CO2/CH4 selectivity was increased to 28.9 (approximate to 30 %). The findings suggest that the development of metal-pi sites with CO2 recognition in MOFs for MMMs is of great significance in the purification of biogas.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Enhanced CO2/CH4 Separation Performance of a Mixed Matrix Membrane Based on Tailored MOF-Polymer Formulations
    Liu, Yang
    Liu, Gongping
    Zhang, Chen
    Qiu, Wulin
    Yi, Shouliang
    Chernikova, Valeriya
    Chen, Zhijie
    Belmabkhout, Youssef
    Shekhah, Osama
    Eddaoudi, Mohamed
    Koros, William
    ADVANCED SCIENCE, 2018, 5 (09):
  • [22] Applying Pebax-1657/ZnO mixed matrix membranes for CO2/CH4 separation
    Farashi, Zahra
    Azizi, Navid
    Homayoon, Reza
    PETROLEUM SCIENCE AND TECHNOLOGY, 2019, 37 (24) : 2412 - 2419
  • [23] Highly permeable and selective polymeric blend mixed matrix membranes for CO2/CH4 separation
    Farnam, Marjan
    bin Mukhtar, Hilmi
    bin Mohd Shariff, Azmi
    CHEMICAL PAPERS, 2021, 75 (11) : 5663 - 5685
  • [24] Mixed matrix membranes based on silica nanoparticles and microcellular polymers for CO2/CH4 separation
    Chen, Xiao Yuan
    Razzaz, Zahir
    Kaliaguine, Serge
    Rodrigue, Denis
    JOURNAL OF CELLULAR PLASTICS, 2018, 54 (02) : 309 - 331
  • [25] The Performance of PPOdm-CNF Mixed Matrix Membrane for CO2/CH4 Separation
    Murugiah, P. S.
    Oh, P. C.
    Lau, K. K.
    INTERNATIONAL JOURNAL OF AUTOMOTIVE AND MECHANICAL ENGINEERING, 2018, 15 (01) : 5086 - 5096
  • [26] A comprehensive review on zeolite-based mixed matrix membranes for CO2/CH4 separation
    Hassan, N. S.
    Jalil, A. A.
    Bahari, M. B.
    Khusnun, N. F.
    Aldeen, E. M. Sharaf
    Mim, R. S.
    Firmansyah, M. L.
    Rajendran, Saravanan
    Mukti, R. R.
    Andika, R.
    Devianto, H.
    CHEMOSPHERE, 2023, 314
  • [27] Highly permeable and selective polymeric blend mixed matrix membranes for CO2/CH4 separation
    Marjan Farnam
    Hilmi bin Mukhtar
    Azmi bin Mohd Shariff
    Chemical Papers, 2021, 75 : 5663 - 5685
  • [28] ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation
    Anson, M
    Marchese, J
    Garis, E
    Ochoa, N
    Pagliero, C
    JOURNAL OF MEMBRANE SCIENCE, 2004, 243 (1-2) : 19 - 28
  • [29] Gas separation performance of 6FDA-DAM-ZIF-11 mixed-matrix membranes for H2/CH4 and CO2/CH4 separation
    Boroglu, Mehtap Safak
    Yumru, Ahenk Burcu
    SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 173 : 269 - 279
  • [30] Mixed matrix membranes based on soluble perfluorinated metal-organic cage and polyimide for CO2/CH4 separation
    Liu, Tongxin
    Zhang, Ruili
    Huang, Guangcan
    Xie, Yabo
    Xie, Lin-Hua
    Li, Jian-Rong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 318