Fast primal-dual algorithm with Tikhonov regularization for a linear equality constrained convex optimization problem

被引:0
|
作者
Zhu, Ting-Ting [1 ]
Fang, Ya-Ping [1 ]
Hu, Rong [2 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
[2] Chengdu Univ Informat Technol, Dept Appl Math, Chengdu 610225, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear equality constrained convex optimization problem; Fast primal-dual algorithm; Tikhonov regularization; Convergence rate; The minimal norm solution; Strong convergence; INERTIAL DYNAMICS; CONVERGENCE; SYSTEM;
D O I
10.1007/s11075-025-02010-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a fast primal-dual algorithm with Tikhonov regularization for solving a linear equality constrained convex optimization problem in a Hilbert space. When the Tikhonov regularization coefficient converges rapidly to zero, we prove that the proposed algorithm enjoys fast convergence rates for the objective function, the primal-dual gap and the feasibility violation, while when the Tikhonov regularization coefficient converges slowly to zero, we prove that the primal sequence generated by the algorithm converges strongly to the minimal norm solution of the problem. Finally, we perform some numerical experiments to illustrate the efficiency of our algorithm.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] A Universal Primal-Dual Convex Optimization Framework
    Yurtsever, Alp
    Quoc Tran-Dinh
    Cevher, Volkan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [32] Hierarchical Convex Optimization With Primal-Dual Splitting
    Ono, Shunsuke
    Yamada, Isao
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (02) : 373 - 388
  • [33] Primal-Dual Solution Perturbations in Convex Optimization
    A. L. Dontchev
    R. T. Rockafellar
    Set-Valued Analysis, 2001, 9 : 49 - 65
  • [34] Exponential Convergence of Primal-Dual Dynamical System for Linear Constrained Optimization
    Guo, Luyao
    Shi, Xinli
    Cao, Jinde
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (04) : 745 - 748
  • [35] Linear convergence of a primal-dual algorithm for distributed interval optimization
    Wang, Yinghui
    Wang, Jiuwei
    Song, Xiaobo
    Hu, Yanpeng
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (02): : 857 - 873
  • [36] A stochastic primal-dual algorithm for composite optimization with a linear operator
    Wen, Meng
    Zhang, Yongqiang
    Tang, Yuchao
    Cui, Angang
    Peng, Jigen
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 267
  • [37] On the global exponential stability of primal-dual dynamics for convex problems with linear equality constraints
    Ozaslan, Ibrahim K.
    Jovanovic, Mihailo R.
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 210 - 215
  • [38] Tight lower bounds on the convergence rate of primal-dual dynamics for equality constrained convex problems
    Ozaslan, Ibrahim K.
    Jovanovic, Mihailo R.
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 7318 - 7323
  • [39] Primal-dual solution perturbations in convex optimization
    Dontchev, AL
    Rockafellar, RT
    SET-VALUED ANALYSIS, 2001, 9 (1-2): : 49 - 65
  • [40] An Adaptive Primal-Dual Subgradient Algorithm for Online Distributed Constrained Optimization
    Yuan, Deming
    Ho, Daniel W. C.
    Jiang, Guo-Ping
    IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (11) : 3045 - 3055