IntelELM: A python']python framework for intelligent metaheuristic-based extreme learning machine

被引:1
|
作者
Thieu, Nguyen Van [1 ]
Houssein, Essam H. [2 ]
Oliva, Diego [3 ]
Hung, Nguyen Duy [4 ,5 ]
机构
[1] PHENIKAA Univ, Fac Comp Sci, Hanoi 12116, Vietnam
[2] Minia Univ, Fac Comp & Informat, Al Minya, Egypt
[3] Univ Guadalajara, CUCEI, Dept Ingn Electrofoton, Guadalajara, Mexico
[4] Artificial Intelligence Independent Res Grp, Hanoi 100000, Vietnam
[5] Viettel Networks, Hanoi 100000, Vietnam
关键词
Metaheuristic algorithms; Extreme learning machine; Metaheuristic optimization-based ELM; Neural network; !text type='Python']Python[!/text] library; Machine learning;
D O I
10.1016/j.neucom.2024.129062
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study introduces IntelELM, an open-source Python library designed for hybrid neural networks that integrate Extreme Learning Machine (ELM) with Metaheuristic Algorithms (MHAs). Built on the foundations of two well-established libraries, Scikit-Learn and Mealpy, IntelELM offers four primary strategies for addressing regression and classification tasks. These strategies are implemented through the ElmRegressor and ElmClassifier classes for traditional ELM, as well as the MhaElmRegressor and MhaElmClassifier for hybrid metaheuristic-based ELM models. The library is easy to install and use, especially for individuals familiar with the Scikit-Learn ecosystem. IntelELM comprises at least 402 distinct models across these four primary classes, encompassing classical ELM regression and classification models, as well as over 200 metaheuristic-based ELM regression and classification models each. To demontrade the power of the proposed library, we evaluate several hybrid models from the IntelELM library alongside traditional machine learning models across three benchmark datasets. Experimental results demonstrate that the hybrid models within IntelELM exhibit competitive performance across various performance metrics compared to traditional machine learning approaches. These findings underscore the library's potential to offer effective solutions to real-world problems and contribute significantly to the computer science community. We have released the source code of the library as open-source, inviting the research community to conduct widespread evaluations of this comprehensive framework as a promising tool for research studies and real-world solutions. The source code can be found at https://github.com/thieu1995/ IntelELM.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Machine Learning Human Behavior Detection Mechanism Based on Python']Python Architecture
    Zhu, Jinnuo
    Goyal, S. B.
    Verma, Chaman
    Raboaca, Maria Simona
    Mihaltan, Traian Candin
    MATHEMATICS, 2022, 10 (17)
  • [22] ProPythia: A Python']Python package for protein classification based on machine and deep learning
    Sequeira, Ana Marta
    Lousa, Diana
    Rocha, Miguel
    NEUROCOMPUTING, 2022, 484 : 172 - 182
  • [23] SPAM: Simplifying Python']Python for Approaching Machine Learning
    Rosiene, Joel A.
    Rosiene, Carolyn Pe
    2020 IEEE FRONTIERS IN EDUCATION CONFERENCE (FIE 2020), 2020,
  • [24] River: machine learning for streaming data in Python']Python
    Montiel, Jacob
    Halford, Max
    Mastelini, Saulo Martiello
    Bolmier, Geoffrey
    Sourty, Raphael
    Vaysse, Robin
    Zouitine, Adil
    Gomes, Heitor Murilo
    Read, Jesse
    Abdessalem, Talel
    Bifet, Albert
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [25] secml: Secure and explainable machine learning in Python']Python
    Pintor, Maura
    Demetrio, Luca
    Sotgiu, Angelo
    Melis, Marco
    Demontis, Ambra
    Biggio, Battista
    SOFTWAREX, 2022, 18
  • [26] PyCIM: A Python']Python Framework for the Dynamics of Coherent Ising Machine
    Li, Peixiang
    Cheng, Hao
    Liu, Yingwen
    Wang, Dongyang
    Wu, Junjie
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT X, ICIC 2024, 2024, 14871 : 194 - 207
  • [27] Machine learning, deep learning and Python']Python language in field of geology
    Zhou YongZhang
    Wang Jun
    Zuo RenGuang
    Xiao Fan
    Shen WenJie
    Wang ShuGong
    ACTA PETROLOGICA SINICA, 2018, 34 (11) : 3173 - 3178
  • [28] Metaheuristic-based extreme learning machines: a review of design formulations and applications
    Eshtay, Mohammed
    Faris, Hossam
    Obeid, Nadim
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2019, 10 (06) : 1543 - 1561
  • [29] Controlling hardware design behavior using Python']Python based machine learning algorithms
    Stefan, Gheorghe
    Alexandru, Dinu
    2021 16TH INTERNATIONAL CONFERENCE ON ENGINEERING OF MODERN ELECTRIC SYSTEMS (EMES), 2021, : 90 - 93
  • [30] Sentiment Analysis using Machine Learning Techniques on Python']Python
    Rathee, Nisha
    Joshi, Nikita
    Kaur, Jaspreet
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2018, : 779 - 785