Diagnosis and detection of bone fracture in radiographic images using deep learning approaches

被引:0
|
作者
Aldhyani, Theyazn [1 ]
Ahmed, Zeyad A. T. [2 ]
Alsharbi, Bayan M. [3 ]
Ahmad, Sultan [4 ,5 ]
Al-Adhaileh, Mosleh Hmoud [6 ]
Kamal, Ahmed Hassan [7 ]
Almaiah, Mohammed [8 ]
Nazeer, Jabeen [4 ]
机构
[1] King Faisal Univ, Appl Coll, Al Hasa, Saudi Arabia
[2] Dr Babasaheb Ambedkar Marathwada Univ, Dept Comp Sci, Aurangabad, India
[3] Taif Univ, Coll Comp & Informat Technol, Dept Informat Technol, Taif, Saudi Arabia
[4] Prince Sattam Bin Abdulaziz Univ, Coll Comp Engn & Sci, Dept Comp Sci, Alkharj, Saudi Arabia
[5] Lovely Profess Univ, Sch Comp Sci & Engn, Phagwara, Punjab, India
[6] King Faisal Univ, Deanship E Learning & Distance Educ & Informat Tec, Al Hasa, Saudi Arabia
[7] King Faisal Univ, Coll Med, Dept Orthoped & Trauma, Al Hasa, Saudi Arabia
[8] Univ Jordan, King Abdullah II IT Sch, Amman, Jordan
关键词
deep learning; artificial intelligence; radiographic images; bone fractures; diagnosis;
D O I
10.3389/fmed.2024.1506686
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Introduction Bones are a fundamental component of human anatomy, enabling movement and support. Bone fractures are prevalent in the human body, and their accurate diagnosis is crucial in medical practice. In response to this challenge, researchers have turned to deep-learning (DL) algorithms. Recent advancements in sophisticated DL methodologies have helped overcome existing issues in fracture detection.Methods Nevertheless, it is essential to develop an automated approach for identifying fractures using the multi-region X-ray dataset from Kaggle, which contains a comprehensive collection of 10,580 radiographic images. This study advocates for the use of DL techniques, including VGG16, ResNet152V2, and DenseNet201, for the detection and diagnosis of bone fractures.Results The experimental findings demonstrate that the proposed approach accurately identifies and classifies various types of fractures. Our system, incorporating DenseNet201 and VGG16, achieved an accuracy rate of 97% during the validation phase. By addressing these challenges, we can further improve DL models for fracture detection. This article tackles the limitations of existing methods for fracture detection and diagnosis and proposes a system that improves accuracy.Conclusion The findings lay the foundation for future improvements to radiographic systems used in bone fracture diagnosis.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Automated Bone Cancer Detection Using Deep Learning on X-Ray Images
    Dalai, Sasanka Sekhar
    Sahu, Bharat Jyoti Ranjan
    Rautaray, Jyotirmayee
    Khan, M. Ijaz
    Jabr, Bander A.
    Ali, Yasser A.
    SURGICAL INNOVATION, 2025, 32 (02) : 94 - 108
  • [22] AUTOMATIC DETECTION OF HAND JOINT REGION, ANKYLOSIS AND SUBLUXATION IN RADIOGRAPHIC IMAGES USING DEEP LEARNING: DEVELOPMENT OF ARTIFICIAL INTELLIGENCE-BASED RADIOGRAPHIC EVALUATION SYSTEM FOR BONE DESTRUCTION
    Izumi, Keisuke
    Suzuki, Kanata
    Hashimoto, Masahiro
    Endoh, Toshio
    Doi, Kentaro
    Iwai, Yuki
    Inamo, Jun
    Ota, Yuichiro
    Kajio, Nobuhiko
    Kikuchi, Jun
    Sakata, Komei
    Takanashi, Satoshi
    Takahashi, Chihiro
    Takei, Hiroshi
    Tamai, Hiroya
    Hiramoto, Kazuoto
    Kaneko, Yuko
    Jinzaki, Masahiro
    Ko, Shigeru
    Takeuchi, Tsutomu
    ANNALS OF THE RHEUMATIC DISEASES, 2019, 78 : 1364 - 1364
  • [23] A real-time human bone fracture detection and classification from multi-modal images using deep learning technique
    Parvin, Shahnaj
    Rahman, Abdur
    APPLIED INTELLIGENCE, 2024, 54 (19) : 9269 - 9285
  • [24] Automated Detection of Microaneurysms in Color Fundus Images using Deep Learning with Different Preprocessing Approaches
    Tavakoli, Meysam
    Jazani, Sina
    Nazar, Mandieh
    MEDICAL IMAGING 2020: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2020, 11318
  • [25] Deep learning enhances acute lymphoblastic leukemia diagnosis and classification using bone marrow images
    Elsayed, Basel
    Elhadary, Mohamed
    Elshoeibi, Raghad Mohamed
    Elshoeibi, Amgad Mohamed
    Badr, Ahmed
    Metwally, Omar
    Elsherif, Raghad Alaa
    Salem, Mohamed Elsayed
    Khadadah, Fatima
    Alshurafa, Awni
    Mudawi, Deena
    Yassin, Mohamed
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [26] An Innovative Deep Learning Approach to Spinal Fracture Detection in CT Images
    Wu, Haiting
    Fu, Qingsong
    ANNALI ITALIANI DI CHIRURGIA, 2024, 95 (04) : 657 - 668
  • [27] Microwave bone fracture diagnosis using deep neural network
    Beyraghi, Sina
    Ghorbani, Fardin
    Shabanpour, Javad
    Lajevardi, Mir Emad
    Nayyeri, Vahid
    Chen, Pai-Yen
    Ramahi, Omar M.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [28] Deep learning for detection of radiographic sacroiliitis
    Knitza, Johannes
    ZEITSCHRIFT FUR RHEUMATOLOGIE, 2021, 80 (07): : 661 - 662
  • [29] A study of deep learning approaches for classification and detection chromosomes in metaphase images
    Andrade, Maria F. S.
    Dias, Lucas V.
    Macario, Valmir
    Lima, Fabiana F.
    Hwang, Suy F.
    Silva, Julio C. G.
    Cordeiro, Filipe R.
    MACHINE VISION AND APPLICATIONS, 2020, 31 (7-8)
  • [30] Deep learning approaches for breast cancer detection in histopathology images: A review
    Priya, Lakshmi C., V
    Biju, V. G.
    Vinod, B. R.
    Ramachandran, Sivakumar
    CANCER BIOMARKERS, 2024, 40 (01) : 1 - 25