Diagnosis and detection of bone fracture in radiographic images using deep learning approaches

被引:0
|
作者
Aldhyani, Theyazn [1 ]
Ahmed, Zeyad A. T. [2 ]
Alsharbi, Bayan M. [3 ]
Ahmad, Sultan [4 ,5 ]
Al-Adhaileh, Mosleh Hmoud [6 ]
Kamal, Ahmed Hassan [7 ]
Almaiah, Mohammed [8 ]
Nazeer, Jabeen [4 ]
机构
[1] King Faisal Univ, Appl Coll, Al Hasa, Saudi Arabia
[2] Dr Babasaheb Ambedkar Marathwada Univ, Dept Comp Sci, Aurangabad, India
[3] Taif Univ, Coll Comp & Informat Technol, Dept Informat Technol, Taif, Saudi Arabia
[4] Prince Sattam Bin Abdulaziz Univ, Coll Comp Engn & Sci, Dept Comp Sci, Alkharj, Saudi Arabia
[5] Lovely Profess Univ, Sch Comp Sci & Engn, Phagwara, Punjab, India
[6] King Faisal Univ, Deanship E Learning & Distance Educ & Informat Tec, Al Hasa, Saudi Arabia
[7] King Faisal Univ, Coll Med, Dept Orthoped & Trauma, Al Hasa, Saudi Arabia
[8] Univ Jordan, King Abdullah II IT Sch, Amman, Jordan
关键词
deep learning; artificial intelligence; radiographic images; bone fractures; diagnosis;
D O I
10.3389/fmed.2024.1506686
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Introduction Bones are a fundamental component of human anatomy, enabling movement and support. Bone fractures are prevalent in the human body, and their accurate diagnosis is crucial in medical practice. In response to this challenge, researchers have turned to deep-learning (DL) algorithms. Recent advancements in sophisticated DL methodologies have helped overcome existing issues in fracture detection.Methods Nevertheless, it is essential to develop an automated approach for identifying fractures using the multi-region X-ray dataset from Kaggle, which contains a comprehensive collection of 10,580 radiographic images. This study advocates for the use of DL techniques, including VGG16, ResNet152V2, and DenseNet201, for the detection and diagnosis of bone fractures.Results The experimental findings demonstrate that the proposed approach accurately identifies and classifies various types of fractures. Our system, incorporating DenseNet201 and VGG16, achieved an accuracy rate of 97% during the validation phase. By addressing these challenges, we can further improve DL models for fracture detection. This article tackles the limitations of existing methods for fracture detection and diagnosis and proposes a system that improves accuracy.Conclusion The findings lay the foundation for future improvements to radiographic systems used in bone fracture diagnosis.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Novel transfer learning based bone fracture detection using radiographic images
    Alam, Aneeza
    Al-Shamayleh, Ahmad Sami
    Thalji, Nisrean
    Raza, Ali
    Barajas, Edgar Anibal Morales
    Thompson, Ernesto Bautista
    Diez, Isabel de la Torre
    Ashraf, Imran
    BMC MEDICAL IMAGING, 2025, 25 (01):
  • [2] Ulnar variance detection from radiographic images using deep learning
    Nooh, Sahar
    Koura, Abdelrahim
    Kayed, Mohammed
    JOURNAL OF BIG DATA, 2025, 12 (01)
  • [3] Bone Fracture Detection Using Deep Supervised Learning from Radiological Images: A Paradigm Shift
    Meena, Tanushree
    Roy, Sudipta
    DIAGNOSTICS, 2022, 12 (10)
  • [4] Femoral neck fracture detection in X-ray images using deep learning and genetic algorithm approaches
    Beyaz, Salih
    Acici, Koray
    Sumer, Emre
    JOINT DISEASES AND RELATED SURGERY, 2020, 31 (02): : 175 - 183
  • [5] Deep Learning for the Radiographic Detection of Periodontal Bone Loss
    Krois, Joachim
    Ekert, Thomas
    Meinhold, Leonie
    Golla, Tatiana
    Kharbot, Basel
    Wittemeier, Agnes
    Doerfer, Christof
    Schwendicke, Falk
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [6] Deep Learning for the Radiographic Detection of Periodontal Bone Loss
    Joachim Krois
    Thomas Ekert
    Leonie Meinhold
    Tatiana Golla
    Basel Kharbot
    Agnes Wittemeier
    Christof Dörfer
    Falk Schwendicke
    Scientific Reports, 9
  • [7] Automatic hyoid bone detection in fluoroscopic images using deep learning
    Zhenwei Zhang
    James L. Coyle
    Ervin Sejdić
    Scientific Reports, 8
  • [8] Automatic hyoid bone detection in fluoroscopic images using deep learning
    Zhang, Zhenwei
    Coyle, James L.
    Sejdic, Ervin
    SCIENTIFIC REPORTS, 2018, 8
  • [9] Enhancing diagnosis: ensemble deep-learning model for fracture detection using X-ray images
    Tahir, A.
    Saadia, A.
    Khan, K.
    Gul, A.
    Qahmash, A.
    Akram, R. N.
    CLINICAL RADIOLOGY, 2024, 79 (11) : e1394 - e1402
  • [10] Deep Learning for Midfacial Fracture Detection in CT Images
    Warin, Kritsasith
    Vicharueang, Sothana
    Jantana, Patcharapon
    Limprasert, Wasit
    Thanathornwong, Bhornsawan
    Suebnukarn, Siriwan
    MEDINFO 2023 - THE FUTURE IS ACCESSIBLE, 2024, 310 : 1497 - 1498