Nanoarchitectonics of S-scheme CdS-SH QDs/Bi2MoO6 heterojunction for boosted photocatalytic lignin biomass conversion: Interplay of singlet oxygen and interfacial engineering

被引:0
|
作者
Liang, Jiangyushan [1 ]
Labidi, Abdelkader [1 ]
Lu, Baoyang [2 ]
Patrocinio, Antonio Otavio T. [3 ]
Sial, Atif [1 ]
Gao, Ting [1 ]
Othman, Sarah I. [4 ]
Allam, Ahmed A. [5 ]
Wang, Chuanyi [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Environm Sci & Engn, Xian 710021, Peoples R China
[2] Jiangxi Sci & Technol Normal Univ, Flexible Elect Innovat Inst, Jiangxi Prov Key Lab Flexible Elect, Nanchang 330013, Jiangxi, Peoples R China
[3] Univ Fed Uberlandia, Lab Photochem & Mat Sci, LAFOT CM, BR-38400902 Uberlandia, MG, Brazil
[4] Princess Nourah bint Abdulrahman Univ, Coll Sci, Dept Biol, POB 84428, Riyadh 11671, Saudi Arabia
[5] Imam Mohammad Ibn Saud Islamic Univ, Coll Sci, Dept Biol, Riyadh 11623, Saudi Arabia
基金
中国国家自然科学基金;
关键词
Lignin biomass conversion; Singlet oxygen; Photocatalysis; S -scheme heterojunction; Value-added chemicals; OXIDATION; DEPOLYMERIZATION; NANOPARTICLES; NANOSHEETS;
D O I
10.1016/j.apcatb.2025.125092
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photocatalytic depolymerization of lignin biomass into high-quality fuels and value-added chemicals shows great potential for environmental protection. However, its efficiency is affected by stringent depolymerization conditions and a complex depolymerization process. Herein, CdS-SH QDs/Bi2MoO6 S-scheme heterojunctions with strong interfacial interactions were successfully fabricated trying to give a "fatal blow" to the crucial C beta-O bond in lignin. The formation of Bi-S bonds at the interface enhances the activation of photogenerated charge carriers, leading to the production of singlet oxygen (1O2), which effectively reduces the bond energy of C beta-O bonds in lignin. On the optimized composite photocatalyst, the total conversion of PP-ol was about 100 % with rising oxygen concentration, and phenol and acetophenone (AP) were the main products with yields of 90 % and 93 %, respectively. By cleaving the C beta-O bond of alkali lignin isolated from Pinus massoniana under air, the yield of vanillin at CdS-SH QDs/Bi2MoO6 was 26.6 mg/glignin, which was 70 and 3.52 folds higher than that of Bi2MoO6 and CdS-SH QDs, respectively. Density-functional theory (DFT) calculations, in-situ X-ray photoelectron spectroscopy (XPS) and in-situ electron paramagnetic resonance (EPR) evidenced the S-scheme charge migration pathways in CdS-SH QDs/Bi2MoO6 during the photocatalytic reaction. This work provides a new perspective on designing photocatalysts capable of efficiently depolymerizing lignin in real environments.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Boosting of the piezoelectric photocatalytic performance of Bi2MoO6 by Fe3+doping and construction S-scheme heterojunction using WO3
    Li, Jiamin
    Chen, Changheng
    Bai, Jiangwen
    Jin, Yuehui
    Guo, Chongfeng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 683 : 574 - 584
  • [22] Photocatalytic degradation of tetracycline antibiotic by a novel Bi2Sn2O7/Bi2MoO6 S-scheme heterojunction: Performance, mechanism insight and toxicity assessment
    Li, Shijie
    Wang, Chunchun
    Liu, Yanping
    Cai, Mingjie
    Wang, Yaning
    Zhang, Huiqiu
    Guo, Yang
    Zhao, Wei
    Wang, Zhaohui
    Chen, Xiaobo
    CHEMICAL ENGINEERING JOURNAL, 2022, 429
  • [23] Constructing oxygen defect-rich Bi2WO6/CeO2 S-scheme heterojunction for boosted photocatalytic antibiotic removal
    Chen, Jiaqi
    Yan, Zhaoxiong
    Ding, Yingjie
    Wang, Guosheng
    Xu, Zhihua
    CHEMICAL ENGINEERING SCIENCE, 2024, 287
  • [24] Design and fabrication of a CdS QDs/Bi2WO6 monolayer S-scheme heterojunction configuration for highly efficient photocatalytic degradation of trace ethylene in air
    Su, Yanghang
    Xu, Xinyue
    Li, Rong
    Luo, Xiao
    Yao, Huijuan
    Fang, Shichao
    Homewood, Kevin Peter
    Huang, Zhongbing
    Gao, Yun
    Chen, Xuxing
    CHEMICAL ENGINEERING JOURNAL, 2022, 429
  • [25] Interfacial oxygen vacancy engineering of double Z-scheme heterojunction Bi2MoO6/MnWO4/g-C3N4 for efficient photocatalytic degradation of iodohydrin
    Wu, Jie
    Xu, Jingjing
    Chen, Mindong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354
  • [26] Rational Design of an Efficient S-Scheme Heterojunction of CdS/Bi2WO6-S Nanocomposites for Photocatalytic CO2Reduction
    Hao M.
    Wei D.
    Li Z.
    Energy and Fuels, 2022, 36 (19): : 11524 - 11531
  • [27] Rational Design of an Efficient S-Scheme Heterojunction of CdS/Bi2WO6-S Nanocomposites for Photocatalytic CO2 Reduction
    Hao, Mingming
    Wei, Dingqiong
    Li, Zhaohui
    ENERGY & FUELS, 2022, 36 (19) : 11524 - 11531
  • [28] Exploring the formation of S-scheme heterojunctions in CuFe2O4/Bi2MoO6 porous cubes for photocatalytic removal of tetracycline
    Xia, Yuqing
    Liu, Haiyang
    Sun, Feng
    Hao, Zhiqiang
    Yue, Bin
    Wang, Xinxing
    Ma, Qianli
    Yu, Wensheng
    Dong, Yujiao
    Dong, Xiangting
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (06):
  • [29] Self-assembled ZnIn2S4/SnS2 QDs S-scheme heterojunction for boosted photocatalytic hydrogen evolution: Energy band engineering and mechanism
    Zhang, Chengming
    Ma, Jun
    Zhu, Haibao
    Ding, Huihui
    Wu, Huanhuan
    Zhang, Kehua
    Zhao, XiaoLi
    Wang, Xiufang
    Cheng, Congliang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 960
  • [30] Construction of Bi2MoO6-SOVs/ZnCdS S-scheme heterojunction with the synergistic effect of internal electric field and oxygen vacancies for photocatalytic degradation of levofloxacin
    Yao, Sheng
    Meng, Fanming
    Gong, Jichao
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 358