Influence of sodium anhydroglucuronate on poly (di(ethylene glycol) methyl ether methacrylate) grafting onto isolated cellulose nanofibrils

被引:0
|
作者
Mariano, Marcos [1 ,5 ]
Fernandes, Ariane S. [1 ,6 ,7 ]
do Nascimento, Diego M. [1 ]
Duran, Nelson [2 ,3 ]
Bernardes, Juliana Silva [1 ,4 ]
机构
[1] Brazilian Ctr Res Energy & Mat, Brazilian Nanotechnol Natl Lab, BR-13083100 Campinas, SP, Brazil
[2] Univ Campinas UNICAMP, Dept Struct & Funct Biol, Lab Urogenital Carcinogenesis & Immunotherapy, Campinas, SP, Brazil
[3] Fed Univ ABC UFABC, Nanomed Res Unit NANOMED, Santo Andre, Brazil
[4] Fed Univ ABC, Ctr Nat & Human Sci, BR-09210580 Santo Andre, SP, Brazil
[5] Southeast Technol Univ SETU, Pharmaceut & Mol Biotechnol Res Ctr PMBRC, Main Campus,Cork Rd, Waterford X91K0EK, Ireland
[6] Univ British Columbia, Dept Wood Sci, Vancouver, BC V6T 1Z3, Canada
[7] Univ British Columbia, UBC Bioprod Inst, Vancouver, BC V6T 1Z3, Canada
基金
巴西圣保罗研究基金会;
关键词
Cellulose nanofibrils; Anhydroglucuronate units; PDEGMA; TRANSFER RADICAL POLYMERIZATION; SURFACE MODIFICATION; NANOCRYSTALS; COPOLYMERIZATION; STABILITY; OXIDATION; HYDROGELS;
D O I
10.1016/j.ijbiomac.2025.140794
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study investigates the temperature-triggered properties and phase behavior of poly(di(ethylene glycol) methyl ether methacrylate) (PDEGMA) grafted onto cellulose nanofibrils (CNF) before and after the removal of water-soluble cellulose derivatives. Mass conversion and 1H NMR analyses revealed that removing soluble molecules from the pristine nanofibril suspension decreased the quantity of free PDEGMA chains in the solution. Besides, cryogenic transmission electron microscopy (cryo-TEM) imaging above the lower critical solution temperature (LCST) highlighted the formation of unbound PDEGMA globular aggregates through the association of dehydrated chains and increased CNF thickness due to the grafting. Rheology and phase behavior analyses showed significant changes above LCST, with a higher concentration of free chains favoring the collapse of the CNF network at 35 degrees C. The proposed mechanism suggests that free polymer chains help to bridge neighboring fibrils, producing a robust hydrogel at lower solid content. These findings highlight the role of cellulose residues in grafting reactions and their impact on the structure and flow properties of the materials.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] LCST-Type Phase Separation of Poly[poly(ethylene glycol) methyl ether methacrylate]s in Hydrofluorocarbon
    Koda, Yuta
    Terashima, Takaya
    Sawamoto, Mitsuo
    ACS MACRO LETTERS, 2015, 4 (12) : 1366 - 1369
  • [32] Water-soluble highly fluorescent poly[poly(ethylene glycol) methyl ether methacrylate] for cell labeling
    Wang, Liang
    Xu, Liqun
    Neoh, Koon Gee
    Kang, En-Tang
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (18) : 6502 - 6505
  • [33] AGET ATRP of Poly[poly(ethylene glycol) methyl ether methacrylate] Catalyzed by Hydrophobic Iron(III)-Porphyrins
    Silvestri, Ilaria Proietti
    Cellesi, Francesco
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2015, 216 (20) : 2032 - 2039
  • [34] Poly(ethylene glycol) Grafting to Poly(ether imide) Membranes: Influence on Protein Adsorption and Thrombocyte Adhesion
    Neffe, Axel T.
    von Ruesten-Lange, Maik
    Braune, Steffen
    Luetzow, Karola
    Roch, Toralf
    Richau, Klaus
    Jung, Friedrich
    Lendlein, Andreas
    MACROMOLECULAR BIOSCIENCE, 2013, 13 (12) : 1720 - 1729
  • [35] Preparation and Characterization of Novel Crosslinked Poly[glycidyl methacrylate-poly(ethylene glycol) methyl ether methacrylate] as Gel Polymer Electrolytes
    Luo, Dan
    Li, Yang
    Yang, Mujie
    JOURNAL OF APPLIED POLYMER SCIENCE, 2011, 120 (05) : 2979 - 2984
  • [36] Thermoresponsive poly(di(ethylene glycol) methyl ether methacrylate)-ran-(polyethylene glycol methacrylate) graft copolymers exhibiting temperature-dependent rheology and self-assembly
    da Silva, Jessica Bassi
    Haddow, Peter
    Bruschi, Marcos Luciano
    Cook, Michael Thomas
    JOURNAL OF MOLECULAR LIQUIDS, 2022, 346
  • [37] Poly(benzyl methacrylate)-poly[(oligo ethylene glycol) methyl ether methacrylate] triblock-copolymers as solid electrolyte for lithium batteries
    Bergfelt, Andreas
    Rubatat, Laurent
    Brandell, Daniel
    Bowden, Tim
    SOLID STATE IONICS, 2018, 321 : 55 - 61
  • [38] Controlled degradation of low-fouling poly(oligo(ethylene glycol)methyl ether methacrylate) hydrogels
    Shoaib, Muhammad M.
    Huynh, Vincent
    Shad, Yousuf
    Ahmed, Rashik
    Jesmer, Alexander H.
    Melacini, Giuseppe
    Wylie, Ryan G.
    RSC ADVANCES, 2019, 9 (33) : 18978 - 18988
  • [39] Tribological Properties of Polydimethylsiloxane Grafted with Poly(Ethylene Glycol) Methyl Ether Methacrylate Under Water Lubrication
    Kim, Tae-Hyeong
    Kim, Dae-Eun
    LUBRICANTS, 2024, 12 (12)
  • [40] Di(ethylene glycol) methyl ether methacrylate (DEGMEMA)-derived gels align small organic molecules in methanol
    Garcia, Manuela E.
    Woodruff, Shannon R.
    Hellemann, Erich
    Tsarevsky, Nicolay V.
    Gil, Roberto R.
    MAGNETIC RESONANCE IN CHEMISTRY, 2017, 55 (03) : 206 - 209