With the rapid development of the Internet of Things (IoT), robust and secure authentication among interconnected devices has become increasingly significant. Existing cryptographic methods, despite their effectiveness, face challenges in scalability, quantum vulnerability, and high computational demands, which are particularly problematic for resource-constrained IoT devices. This paper proposes a novel and lightweight authentication scheme for IoT devices that combines the decentralization of blockchain with the efficiency of lattice-based cryptography to address these security concerns. The proposed scheme employs a decentralized identity management model built on blockchain, eliminating vulnerable central points and enhancing system resilience. For user and device authentication, an efficient lattice-based protocol is introduced, utilizing simplified hash operations and matrix-vector multiplication for key negotiation and authentication. This approach significantly reduces both computational complexity and communication overhead compared to traditional methods such as ECC-based schemes. Specifically, at a 100-bit security level, our scheme achieves authentication and key agreement in approximately 257.401 mu s and maintains a communication cost of 1052 bits per authentication session. Comprehensive performance analyses demonstrate that the proposed scheme can withstand typical cryptographic attacks and offers advantages in quantum computing resistance. Additionally, the blockchain-based design ensures high scalability, making the scheme ideal for large-scale IoT deployments without performance degradation. Experimental results further validate the scheme's practical applicability in resource-constrained IoT environments, highlighting its superior computational response times and lower communication costs compared to existing IoT authentication solutions.