Efficient Hierarchical Federated Services for Heterogeneous Mobile Edge

被引:0
|
作者
Liang, Shengyuan [1 ]
Cui, Qimei [2 ,3 ]
Huang, Xueqing [4 ]
Zhao, Borui [1 ]
Hou, Yanzhao [1 ]
Tao, Xiaofeng [2 ,3 ]
机构
[1] Beijing Univ Posts & Telecommun, Natl Engn Res Ctr Mobile Network Technol, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Natl Engn Res Ctr Mobile Network Technol, Beijing 100876, Peoples R China
[3] Peng Cheng Lab, Dept Broadband Commun, Shenzhen 518055, Peoples R China
[4] New York Inst Technol, Dept Comp Sci, Old Westbury, NY 11568 USA
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Computational modeling; Costs; Data models; 6G mobile communication; Uplink; Indexes; Central Processing Unit; Servers; Optimization; Internet of Things; Adaptive node selection; federated learning (FL); hierarchical aggregation deployment; hierarchical network architecture; multi-dimensional heterogeneity; RESOURCE-ALLOCATION; CLIENT SELECTION; ASSOCIATION; NETWORKS;
D O I
10.1109/TSC.2024.3495501
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As 6G networks actively advance edge intelligence, Federated Learning (FL) emerges as a key technology that enables data sharing while preserving data privacy and fostering collaboration among edge devices for intelligent service learning. However, the multi-dimensional heterogeneous and hierarchical network architecture brings many challenges to FL deployment, including selecting appropriate nodes for model training and designing effective methods for model aggregation. Compared with most studies that focus on solving individual problems within 6G, this paper proposes an efficient deployment scheme named hierarchical heterogeneous FL (HHFL), which comprehensively considers various influencing factors. First, the deployment of HHFL over 6G is modeled amid the heterogeneity of communications, computation, and data. An optimization problem is then formulated, aiming to minimize deployment costs in terms of latency and energy consumption. Subsequently, to tackle this optimization challenge, we design an intelligent FL deployment framework, consisting of a hierarchical aggregation deployment (HAD) component for hierarchical FL aggregation structure construction and an adaptive node selection (ANS) component for selecting diverse clients based on multi-dimensional discrepancy criteria. Experimental results demonstrate that our proposed framework not only adapts to various application requirements but also outperforms existing technologies by achieving superior learning performance, reduced latency, and lower energy consumption.
引用
收藏
页码:140 / 155
页数:16
相关论文
共 50 条
  • [1] Equalized Aggregation for Heterogeneous Federated Mobile Edge Learning
    Yang, Zhao
    Zhang, Shengbing
    Li, Chuxi
    Wang, Miao
    Yang, Jiaying
    Zhang, Meng
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (05) : 3558 - 3575
  • [2] Optimizing Training Efficiency and Cost of Hierarchical Federated Learning in Heterogeneous Mobile-Edge Cloud Computing
    Cui, Yangguang
    Cao, Kun
    Zhou, Junlong
    Wei, Tongquan
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023, 42 (05) : 1518 - 1531
  • [3] Federated Learning as a Service for Hierarchical Edge Networks with Heterogeneous Models
    Gao, Wentao
    Tavallaie, Omid
    Chen, Shuaijun
    Zomaya, Albert
    SERVICE-ORIENTED COMPUTING, ICSOC 2024, PT I, 2025, 15404 : 85 - 99
  • [4] Efficient Hierarchical Personalized Federated Learning on Heterogeneous Data
    Wang, Sai
    You, Changsheng
    Zhao, Junhui
    Gong, Yi
    2024 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA, ICCC, 2024,
  • [5] Energy-Efficient Client Sampling for Federated Learning in Heterogeneous Mobile Edge Computing Networks
    Tang, Jian
    Li, Xiuhua
    Li, Hui
    Xiong, Min
    Wang, Xiaofei
    Leung, Victor C. M.
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 956 - 961
  • [6] Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
    Nishio, Takayuki
    Yonetani, Ryo
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [7] Enhanced Hybrid Hierarchical Federated Edge Learning Over Heterogeneous Networks
    Chen, Qimei
    You, Zehua
    Wen, Dingzhu
    Zhang, Zhaoyang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (11) : 14601 - 14614
  • [8] Personalized client-edge-cloud hierarchical federated learning in mobile edge computing
    Ma, Chunmei
    Li, Xiangqian
    Huang, Baogui
    Li, Guangshun
    Li, Fengyin
    Journal of Cloud Computing, 2024, 13 (01)
  • [9] Towards Efficient Asynchronous Federated Learning in Heterogeneous Edge Environments
    Zhou, Yajie
    Pang, Xiaoyi
    Wang, Zhibo
    Hu, Jiahui
    Sun, Peng
    Ren, Kui
    IEEE INFOCOM 2024-IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, 2024, : 2448 - 2457
  • [10] Distributed hierarchical deep optimization for federated learning in mobile edge computing
    Zheng, Xiao
    Shah, Syed Bilal Hussain
    Bashir, Ali Kashif
    Nawaz, Raheel
    Rana, Umer
    COMPUTER COMMUNICATIONS, 2022, 194 : 321 - 328