Efficient Measurement of Orbital Angular Momentum Entanglement Using Convolutional Neural Network

被引:0
|
作者
Zhao, Jiaxian [1 ,2 ]
Wang, Min [1 ,2 ]
Huang, Shuang-Yin [3 ,4 ]
Ge, Yu [1 ,2 ]
Tu, Chenghou [1 ,2 ]
Li, Yongnan [1 ,2 ]
Wang, Hui-Tian [3 ,4 ]
机构
[1] Nankai Univ, Key Lab Weak Light Nonlinear Photon, Tianjin 300071, Peoples R China
[2] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China
[3] Nanjing Univ, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[4] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
convolutional neural network; orbital angular momentum; quantum entanglement; quantum tomography; QUANTUM; TOMOGRAPHY;
D O I
10.1002/lpor.202400720
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
High-dimensional (HD) entanglement of photonic orbital angular momentum (OAM) offers significant potential for enhancing channel capacity and improving noise resistance in quantum information processing. However, the challenge of achieving simple and rapid measurement has limited its practical applications. In this work, a quantum state tomography (QST) framework is demonstrated that utilizes convolutional neural networks to rapidly reconstruct the density matrix of OAM entanglement from only two coincidence measurements. The experimental results for a 5D OAM entangled state yield a fidelity of 0.973 +/- 0.005. This method is also applicable to mixed OAM entangled states and scenarios with incomplete tomographic measurements. These findings represent a significant step toward implementing high-speed QST for applications involving HD spatial mode quantum state, whether in free space or integrated systems.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Efficient Recognition of the Propagated Orbital Angular Momentum Modes in Turbulences With the Convolutional Neural Network
    Wang, Zikun
    Dedo, Maxime Irene
    Guo, Kai
    Zhou, Keya
    Shen, Fei
    Sun, Yongxuan
    Liu, Shutian
    Guo, Zhongyi
    IEEE PHOTONICS JOURNAL, 2019, 11 (03):
  • [2] Recognition of orbital angular momentum vortex beam based on convolutional neural network
    Ke, Xizheng
    Chen, Meng
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2021, 63 (07) : 1960 - 1964
  • [3] Detecting the orbital angular momentum from speckle via convolutional neural network
    Huang, Huiling
    Liu, Yanfeng
    Han, Jun
    APPLIED PHYSICS EXPRESS, 2022, 15 (06)
  • [4] Research on Orbital Angular Momentum Recognition Technology Based on a Convolutional Neural Network
    Li, Xiaoji
    Sun, Leiming
    Huang, Jiemei
    Zeng, Fanze
    SENSORS, 2023, 23 (02)
  • [5] Automatic Alignment of an Orbital Angular Momentum Sorter in a Transmission Electron Microscope Using a Convolutional Neural Network
    Rosi, Paolo
    Clausen, Alexander
    Weber, Dieter
    Tavabi, Amir H.
    Frabboni, Stefano
    Tiemeijer, Peter
    Dunin-Borkowski, Rafal E.
    Rotunno, Enzo
    Grillo, Vincenzo
    MICROSCOPY AND MICROANALYSIS, 2023, 29 (01) : 408 - 417
  • [6] Mode Recognition of Orbital Angular Momentum Based on Attention Pyramid Convolutional Neural Network
    Qu, Tan
    Zhao, Zhiming
    Zhang, Yan
    Wu, Jiaji
    Wu, Zhensen
    REMOTE SENSING, 2022, 14 (18)
  • [7] Convolutional Neural Network Assisted Optical Orbital Angular Momentum Identification of Vortex Beams
    Xiong, Wenjie
    Luo, Yi
    Liu, Junmin
    Huang, Zebin
    Wang, Peipei
    Zhao, Gaiqing
    Li, Ying
    Gao, Yanxia
    Chen, Shuqing
    Fan, Dianyuan
    IEEE ACCESS, 2020, 8 : 193801 - 193812
  • [8] Convolutional Neural Network-Assisted Optical Orbital Angular Momentum Recognition and Communication
    Wang, Peipei
    Liu, Junmin
    Sheng, Lijuan
    He, Yanliang
    Xiong, Wenjie
    Huang, Zebin
    Zhou, Xinxing
    Li, Ying
    Chen, Shuqing
    Zhang, Xiaomin
    Fan, Dianyuan
    IEEE ACCESS, 2019, 7 : 162025 - 162035
  • [9] Mode detection of misaligned orbital angular momentum beams based on convolutional neural network
    Zhao, Qingsong
    Hao, Shiqi
    Wang, Yong
    Wang, Lei
    Wan, Xiongfeng
    Xu, Chenlu
    APPLIED OPTICS, 2018, 57 (35) : 10152 - 10158
  • [10] Efficient identification of orbital angular momentum modes carried by Bessel Gaussian beams in oceanic turbulence channels using convolutional neural network
    Liu, Wenyi
    Jin, Meng
    Hao, Yuan
    Deng, Dongmei
    Wu, Ruihuan
    Wei, Zhongchao
    Liu, Hongzhan
    OPTICS COMMUNICATIONS, 2021, 498