Model Checking Computation Tree Logic Over Multi-Valued Decision Processes and Its Reduction Techniques

被引:3
|
作者
Liu, Wuniu [1 ]
Wang, Junmei [2 ]
He, Qing [2 ]
Li, Yongming [1 ]
机构
[1] Shaanxi Normal Univ, Sch Math & Stat, Xian 710119, Peoples R China
[2] Shaanxi Normal Univ, Sch Comp Sci, Xian 710119, Peoples R China
基金
中国国家自然科学基金;
关键词
Statistical analysis; Computational modeling; Scalability; Markov decision processes; Decision making; Model checking; Systems modeling; Probabilistic logic; Mathematical models; Time complexity; Multi-valued decision processes; Multi-valued computation tree logic; Scheduler; Reduction techniques;
D O I
10.23919/cje.2021.00.333
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Model checking computation tree logic based on multi-valued possibility measures has been studied by Li et al. on Information Sciences in 2019. However, the previous work did not consider the nondeterministic choices inherent in systems represented by multi-valued Kripke structures (MvKSs). This nondeterminism is crucial for accurate system modeling, decision making, and control capabilities. To address this limitation, we draw inspiration from the generalization of Markov chains to Markov decision processes in probabilistic systems. By integrating nondeterminism into MvKS, we introduce multi-valued decision processes (MvDPs) as a framework for modeling MvKSs with nondeterministic choices. We investigate the problems of model checking over MvDPs. Verifying properties are expressed by using multi-valued computation tree logic based on schedulers. Our primary objective is to leverage fixpoint techniques to determine the maximum and minimum possibilities of the system satisfying temporal properties. This allows us to identify the optimal or worst-case schedulers for decision making or control purposes. We aim to develop reduction techniques that enhance the efficiency of model checking, thereby reducing the associated time complexity. We mathematically demonstrate three reduction techniques that improve model checking performance in most scenarios.
引用
收藏
页码:1399 / 1411
页数:13
相关论文
共 50 条
  • [21] Constructing a multi-valued and multi-labeled decision tree
    Chen, YL
    Hsu, CL
    Chou, SC
    EXPERT SYSTEMS WITH APPLICATIONS, 2003, 25 (02) : 199 - 209
  • [22] Generalized possibility computation tree logic with frequency and its model checking
    He, Qing
    Liu, Wuniu
    Li, Yongming
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2024, 173
  • [23] A Direct Algorithm for Multi-valued Bounded Model Checking
    Andrade, Jefferson O.
    Kameyama, Yukiyoshi
    AUTOMATED TECHNOLOGY FOR VERIFICATION AND ANALYSIS, PROCEEDINGS, 2008, 5311 : 80 - 94
  • [24] Generating counterexamples for multi-valued model-checking
    Gurfinkel, A
    Chechik, M
    FME 2003: FORMAL METHODS, PROCEEDINGS, 2003, 2805 : 503 - 521
  • [25] On designated values in multi-valued CTL* model checking
    Konikowska, B
    Penczek, W
    FUNDAMENTA INFORMATICAE, 2004, 60 (1-4) : 211 - 224
  • [26] A Kind of Optoelectronic Memristor Model and Its Applications in Multi-Valued Logic
    Wang, Jiayang
    Lin, Yuzhe
    Hu, Chenhao
    Zhou, Shiqi
    Gu, Shenyu
    Yang, Mengjie
    Ma, Guojin
    Yan, Yunfeng
    ELECTRONICS, 2023, 12 (03)
  • [27] Multi-valued model checking in dense-time
    Vilas, AF
    Arias, JJP
    Martínez, ABB
    Nores, ML
    Redondo, RPD
    Solla, AG
    Duque, JG
    Cabrer, MR
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS, 2005, 3571 : 638 - 649
  • [28] An Automata-Theoretic Approach to L-valued Computation Tree Logic Model Checking
    Wei Xiujuan
    Li Yongming
    CHINESE JOURNAL OF ELECTRONICS, 2019, 28 (02) : 309 - 315
  • [29] An Automata-Theoretic Approach to L-valued Computation Tree Logic Model Checking
    WEI Xiujuan
    LI Yongming
    Chinese Journal of Electronics, 2019, 28 (02) : 309 - 315
  • [30] Generic implementation of multi-valued logic decision diagram packages
    Drechsler, R
    Jankovic, D
    Stankovic, RS
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2005, 11 (1-2) : 1 - 18