Semantic information-based attention mapping network for few-shot knowledge graph completion

被引:0
|
作者
Guo, Fan [1 ]
Chang, Xiangmao [1 ]
Guo, Yunqi [2 ]
Xing, Guoliang [2 ]
Zhao, Yunlong [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Comp Sci & Technol, Nanjing 210016, Peoples R China
[2] Chinese Univ Hong Kong, Dept Informat Engn, Hong Kong 999077, Peoples R China
关键词
Knowledge graph; Link prediction; Few-shot learning; Text semantics; Attention mechanism; Contrast learning;
D O I
10.1016/j.neunet.2025.107366
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot Knowledge Graph Completion (FKGC), an emerging technology capable of inferring new triples using only a few reference relation triples, has gained significant attention in recent years. However, existing FKGC methods primarily focus on structural information while failing to effectively utilize the textual semantic information inherent in triples. To address this limitation, we propose an innovative Semantic Information- based Attention Mapping Network (SI-AMN). This novel model significantly enhances knowledge graph completion accuracy through a unique dual-information fusion mechanism that effectively integrates both structural and textual semantic information. The core innovation of SI-AMN lies in its two key components: a semantic encoder for extracting high-quality textual features and an attention mapping network that learns semantic interactions between entity and relation types. Experimental results on benchmark datasets demonstrate SI-AMN's superior performance, achieving a 40% improvement in prediction accuracy compared to state-of-the-art methods. Ablation studies further validate the effectiveness of each component in our proposed model. This research not only provides a novel solution for knowledge graph completion but also reveals the crucial value of semantic information in graph completion tasks, paving the way for future research directions in this field.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Normalizing Flow-based Neural Process for Few-Shot Knowledge Graph Completion
    Luo, Linhao
    Li, Yuan-Fang
    Haffari, Gholamreza
    Pan, Shirui
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 900 - 910
  • [32] A Dual Attention Network with Semantic Embedding for Few-Shot Learning
    Yan, Shipeng
    Zhang, Songyang
    He, Xuming
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 9079 - 9086
  • [33] Multiscale Attention-Based Prototypical Network For Few-Shot Semantic Segmentation
    Zhang, Yifei
    Sidibe, Desire
    Morel, Olivier
    Meriaudeau, Fabrice
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 7372 - 7378
  • [34] ARNET:ATTENTION-BASED REFINEMENT NETWORK FOR FEW-SHOT SEMANTIC SEGMENTATION
    Li, Rusheng
    Liu, Hanhui
    Zhu, Yuesheng
    Bai, Zhiqiang
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 2238 - 2242
  • [35] Transductive Graph-Attention Network for Few-shot Classification
    Pan, Lili
    Liu, Weifeng
    2022 16TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP2022), VOL 1, 2022, : 190 - 195
  • [36] Dealing with Over-Reliance on Background Graph for Few-Shot Knowledge Graph Completion
    Yang, Ruiyin
    Wei, Xiao
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, KSEM 2023, 2023, 14117 : 263 - 275
  • [37] LLM-based Multi-Level Knowledge Generation for Few-shot Knowledge Graph Completion
    Li, Qian
    Chen, Zhuo
    Ji, Cheng
    Jiang, Shiqi
    Li, Jianxin
    PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024, 2024, : 2135 - 2143
  • [38] Capsule neural tensor networks with multi-aspect information for Few-shot Knowledge Graph Completion
    Li, Qianyu
    Yao, Jiale
    Tang, Xiaoli
    Yu, Han
    Jiang, Siyu
    Yang, Haizhi
    Song, Hengjie
    NEURAL NETWORKS, 2023, 164 : 323 - 334
  • [39] Phrase-level attention network for few-shot inverse relation classification in knowledge graph
    Shaojuan Wu
    Chunliu Dou
    Dazhuang Wang
    Jitong Li
    Xiaowang Zhang
    Zhiyong Feng
    Kewen Wang
    Sofonias Yitagesu
    World Wide Web, 2023, 26 : 3001 - 3026
  • [40] Phrase-level attention network for few-shot inverse relation classification in knowledge graph
    Wu, Shaojuan
    Dou, Chunliu
    Wang, Dazhuang
    Li, Jitong
    Zhang, Xiaowang
    Feng, Zhiyong
    Wang, Kewen
    Yitagesu, Sofonias
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (05): : 3001 - 3026