We introduce symplectic left Leibniz algebras and symplectic right Leibniz algebras as generalizations of symplectic Lie algebras. These algebras possess a left symmetric product and are Lie-admissible. We describe completely symmetric Leibniz algebras that are symplectic as both left and right Leibniz algebras. Additionally, we show that symplectic left or right Leibniz algebras can be constructed from a symplectic Lie algebra and a vector space through a method that combines the double extension process and the T & lowast;-extension. This approach allows us to generate a broad class of examples. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
机构:
Christian Albrechts Univ Kiel, Math Seminar, D-24118 Kiel, GermanyUniv Insubria, Dipartimento Sci & Alta Tecnol, Via Valleggio 11, I-22100 Como, Italy
Freibert, Marco
Latorre, Adela
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Madrid, Dept Matemat Aplicada, Avda Juan de Herrera 4, Madrid 28040, SpainUniv Insubria, Dipartimento Sci & Alta Tecnol, Via Valleggio 11, I-22100 Como, Italy
Latorre, Adela
Tardini, Nicoletta
论文数: 0引用数: 0
h-index: 0
机构:
Univ Parma, Dipartimento Sci Matemat Fis & Informat, Unita Matemat & Informat, Parco Area Sci 53-A, I-43124 Parma, ItalyUniv Insubria, Dipartimento Sci & Alta Tecnol, Via Valleggio 11, I-22100 Como, Italy