Symplectic Leibniz algebras as a non-commutative version of symplectic Lie algebras

被引:0
|
作者
Abid, Fatima-Ezzahrae [1 ]
Boucetta, Mohamed [1 ]
机构
[1] Univ Cadi Ayyad, Fac Sci & Tech, BP 549, Marrakech, Morocco
关键词
Leibniz algebras; Symplectic Lie algebras; Double extension;
D O I
10.1016/j.jalgebra.2025.03.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce symplectic left Leibniz algebras and symplectic right Leibniz algebras as generalizations of symplectic Lie algebras. These algebras possess a left symmetric product and are Lie-admissible. We describe completely symmetric Leibniz algebras that are symplectic as both left and right Leibniz algebras. Additionally, we show that symplectic left or right Leibniz algebras can be constructed from a symplectic Lie algebra and a vector space through a method that combines the double extension process and the T & lowast;-extension. This approach allows us to generate a broad class of examples. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:1 / 35
页数:35
相关论文
共 50 条
  • [41] Symplectic structures, product structures and complex structures on Leibniz algebras
    Tang, Rong
    Xu, Nanyan
    Sheng, Yunhe
    JOURNAL OF ALGEBRA, 2024, 647 : 710 - 743
  • [42] Graded contractions of symplectic Lie algebras in collective models
    Tolar, J
    Travnicek, P
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (01) : 501 - 523
  • [43] Weak mirror symmetry of complex symplectic Lie algebras
    Cleyton, R.
    Poon, Y. S.
    Ovando, G. P.
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (08) : 1553 - 1563
  • [44] HOMOMORPHISMS OF THE LIE-ALGEBRAS ASSOCIATED WITH A SYMPLECTIC MANIFOLD
    ATKIN, CJ
    GRABOWSKI, J
    COMPOSITIO MATHEMATICA, 1990, 76 (03) : 315 - 349
  • [45] THE CATEGORY OF WEIGHT MODULES FOR SYMPLECTIC OSCILLATOR LIE ALGEBRAS
    Liu, Genqiang
    Zhao, Kaiming
    TRANSFORMATION GROUPS, 2022, 27 (03) : 1025 - 1044
  • [46] Complex symplectic Lie algebras with large Abelian subalgebras
    Bazzoni, Giovanni
    Freibert, Marco
    Latorre, Adela
    Tardini, Nicoletta
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 677 : 254 - 305
  • [47] Lie Algebras of Hamiltonian Vector Fields and Symplectic Manifolds
    Lodder, Jerry M.
    JOURNAL OF LIE THEORY, 2008, 18 (04) : 897 - 914
  • [48] Structure of locally conformally symplectic Lie algebras and solvmanifolds
    Angella, Daniele
    Bazzoni, Giovanni
    Parton, Maurizio
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2020, 20 (01) : 373 - 411
  • [49] Poisson and symplectic structures on Lie algebras .1.
    Alekseevsky, DV
    Perelomov, AM
    JOURNAL OF GEOMETRY AND PHYSICS, 1997, 22 (03) : 191 - 211
  • [50] THE CATEGORY OF WEIGHT MODULES FOR SYMPLECTIC OSCILLATOR LIE ALGEBRAS
    GENQIANG LIU
    KAIMING ZHAO
    Transformation Groups, 2022, 27 : 1025 - 1044